数理情報工学科

学習の手引

令和7年4月

日本大学生産工学部

目次

数理情報工学科	学習•教育到達目標	2
	シミュレーション・データサイエンスコース	3
	メディアデザインコース	5
	コンピュータサイエンスコース	7
	カリキュラムマップ	13
	1 年次	24
	2 年次	24
	3 年次	25
	4 年次	25
	ゼミナール	26
	卒業研究	27
研究室紹介		29
生産実習		45
大学院		47
就職	就職	51
	公務員を目指す	53
	各種資格の取得について	53
	主な就職先	54
こころがまえ		55
履修モデル		

数理情報工学科

http://www.su.cit.nihon-u.ac.jp

メールでの学生相談窓口を開設しています 困ったことがあればいつでもメールしてください 個人情報、プライバシーは厳守します cit.sj-gakuseisoudan@nihon-u.ac.jp 管理者 学科主任

学習・教育到達目標

先端科学技術の目覚しい発展とコンピュ ータの性能の限りない向上は、先端科学技 術の可能性をますます増大させています。 20世紀が不可能を可能にした世紀であっ たのに、さらにまた21世紀は何を可能に してくれるのでしょうか。予測することは 簡単ではありません。ただ工学の役割は人 工物の生産に多くの目的を置いていた20 世紀とはかなり役割が異なるものになるこ とが予想されます。あるいはなるべきもの と言った方がよいかもしれません。世紀の 物質文明がもたらしたさまざまな負の遺産 は、21世紀には大きな負担となって好む と好まざるとに拘わらず継承されて行くこ とになります。地球温暖化一つを例にとっ てみても、問題の根深さが分かります。こ れまでの技術では解決出来ない問題を解決 するためには、その技術そのものを開発し なければなりません。コンピュータがこれ を可能にしてきた例を挙げたらきりがない といっても良いでしょう。

本学科には、キャンパスガイドに記され ているように、それぞれの技術分野を目指 す「シミュレーション・データサイエンス コース」、「メディアデザインコース」、「コ ンピュータサイエンスコース」の3つのコー スが用意され、いずれのコースにも共通す る学科としてのアドミッションポリシー、 カリキュラムポリシー、ディプロマポリシ ーが定められています。さらに、各コース 固有の学習・教育到達目標もあり、各コース を特徴づけています。ここでは、それぞれ のコースの学習・教育到達目標などについ て説明します。その後で、各コースのカリ キュラムマップを示し、入学から卒業まで の履修モデル及び取得可能な資格を掲載し ていますので、コース選択や履修科目決定 の参考にしてください。

シミュレーション・データサイエンスコース

シミュレーション・データサイエンスコースでは、技術革新の速い情報化社会に対処できる数理的思考をもった情報処理技術者の育成を目指し、多数設置された数理分野の科目から、数理解析や応用数理の基礎と、複雑なシステムの数理モデル化手法やシミュレーション技術,さらにはデータサイエンスの基礎と応用が習得できます。又、情報工学分野でのコンピュータによる実技を含んだ基礎能力を身につけ、情報処理技術者に必要とされる各種技術の習得ができます。

以下に、本コースの学習・教育到達目標、 特徴、及び履修について掲載します。

<学習・教育到達目標>

本コースでは「数理的な思考をもった情 報処理技術者育成のための教育」を目指し ています。数理的な思考の基礎となるのが 数学であり、それを具体化する道具として コンピュータがあります。これらの二つを 用い、新しい問題を解決するのに必要な「数 理的発想・思考・方法」を学びます。その 「数理的発想・思考・方法」とは、自然シ ステム、人工システムや情報システムなど のさまざまな分野に対する個々の問題を個 別に解決しようとするのではなく、個々の 問題に共通に内在するものを抽象化して数 理モデルを構築し、そのモデルを解析し、 問題の本質を理解しようとするものです。 さらに、収集蓄積された情報(データ)に 対し、「人工知能(AI)」や「機械学習」を 活用して適切に分析評価する能力、及びそ の情報を発信するのに必要な情報技術の活 用能力も養います。

以下に、本コースの学習・教育到達目標 を示します。

A. 数学、自然科学、情報工学の基礎知識 の習得

数学、物理学などの自然科学の基礎知識

を養うことは、数理的な思考をもった知の 構築においては重要なことであると考えて います。それらの基礎科学知識を身につけ、 情報工学に関する基礎理論やその応用能力 などの基礎知識を習得し、数理的思考が可 能な情報処理技術者の基本を身につけさせ ます。

B. 技術者倫理の習得

高度に情報化された社会を支える要因としては、情報技術の進展のみならず、その社会の一員としての我々の倫理観や責任感も重要となります。情報技術の社会や自然への影響をその功罪も含めて判断できる倫理観と責任感を有する幅広い教養を身につけ、知的所有権などの法的側面にも考慮できる技術者の育成を目指します。

C. システムの数理モデル化と解析シミュレーション技術の習得

システム(自然、人工、情報)の現象を 精度良く再現できる数理モデル化と、それ を解析する技術を習得し、「もの」を作らな くても特性を予測し解析できる、効率的な 「ものづくり」が可能な技術者の育成を目 指します。このような技術者の社会的ニー ズは、非常に高い。

D. 情報技術の活用能力の習得

小学校・中学校でプログラミング教育が 導入され、高校では「情報」が必修化され ており、情報関連科目の重要性や、それら を担当する教員の必要性がますます高まっ ています。このような教育環境状況を考え ると、情報工学に関する理論の習得はもと より、情報を収集蓄積し、適切に分析評価 し、魅力的なデジタルコンテンツを作成す る能力を身につけ、さらに情報を発信する のに必要な情報技術の活用能力を習得する ことは重要です。

E. システムのデザイン能力とインテグレーション能力の習得

高度情報化社会に対処できる技術者の育成を目指し、数理システムや情報システムの中に内在している問題のモデル化とそのソフトウェア開発やシミュレーション、さらにその成果をもとにしたシステムのデザイン能力およびインテグレーション能力を習得します。また、これらの一連の作業により得られた結果を現実の問題や現象にフィードバックし、再度評価することにより数理モデルの妥当性が検討され、数理システムや情報システム構築のための統合化を図ることになります。

くコースの特徴>

- ① シミュレーション技術やデータサイエ ンスにくわえて情報工学の周辺学際領 域(人工知能・AI を含む)も学ぶこと ができます。
- ② 数理解析や応用数理の基礎と応用を習得するため、多数設置された数理分野の科目から、計画的に科目履修する必要があります。
- ③ 科目の中で情報処理技術者資格などを取得するための配慮もされています。
- ④ 教職課程「情報:高等学校教論ー種免許状」・「数学:中学校教論ー種免許状及び高等学校教論ー種免許状」の教員免許状が取得可能です。

く履修について>

卒業研究着手条件や卒業に必要な単位等についてはキャンパスガイドを参照してください。 なお、GPA (Grade Point Average)により、各人の履修登録が可能な単位数には上限が設置されています。

数理情報工学科シミュレーション・データサイエンスコースのカリキュラムでは、他学科・他コースの専門教育科目で習得した単位(科目担当者に許可を得たうえで受講登録した科目)を最大6単位まで専門教育科目の68単位内に算入できます。

また、以下の項目に注意してください。

- (1) 2年生の前期ガイダンス時にシミュレーション・データサイエンスコースに所属する学生を決定します。シミュレーション・データサイエンスコースの定員は約50名です。
- (2)コース変更は、原則として認めません。

メディアデザインコース

従来の情報を解析・処理するための情報 技術ではなく、情報を表現する技術を中心 として「魅力的な表現で、役に立つ情報を、 必要とする人に提供する」ための情報の分 析・処理・表現の全般に関するデザイン技 術の習得ができます。どのメディアを用い てどのように表現すれば、必要とする人に 分かりやすく、効果的に伝えられるかとい ったより深い視点で考えられるクリエータ ーやエンジニアを育成するため、メディア デザイン技術(Web、CG、アニメーショ ン、ゲーム、エンターテイメント等)とそ の周辺技術(マーケティングリサーチ、技 術者倫理、知的所有権等)、および、メディ アシステムの企画・設計・構築・管理を行 うためのプロジェクトマネジメント技術を 学びます。

以下に、本コースの学習・教育到達目標、 特徴、及び履修について掲載します。

<学習・教育到達目標>

本コースでは、メディアデザイン技術と、 その周辺技術、およびそれらに必要な基盤 情報技術を学びます。さらに、メディアデ ザイン分野においてクリエーターやエンジ ニアとして広く活躍するためには、メディ アシステムの企画・設計・構築・管理など をグループで遂行するプロジェクトマネジ メント能力が重要となります。そのため実 技科目等を通してプロジェクトマネジメント能力の習得を行います。また、メディア 技術を駆使した表現能力や、世界を視野に 活躍できるコミュニケーション能力の備わった実践的な技術者の育成を目指します。

以下に、本コースの学習・教育到達目標 を示します。

A. メディアデザイン技術およびそれに 必要な基盤情報技術の習得

「魅力的な表現で、役に立つ情報を、必要とする人に提供する」ための情報の分

析・処理・表現の全般に関するデザイン技術を習得します。具体的にはメディアデザイン技術(Web、CG、アニメーション、ゲーム、エンターテイメント等)と、その周辺技術(マーケティングリサーチ、技術者倫理、知的所有権等)、および、それらに必要な基盤情報技術を習得します。

B. 技術者倫理の習得

情報技術やメディアコンテンツが社会や 自然に与える影響をその功罪を含めて判断 できる倫理観と責任感を有する幅広い教養 を身につけ、知的所有権などの法的側面に も考慮できる技術者の育成を目指します。

C. プロジェクトの計画・遂行能力の習 得

多くの実技科目等を通して、メディアシステムの企画・設計・構築・管理などをグループで遂行するプロジェクトの計画・遂行能力を習得します。

D. 社会の要求に対する問題解決能力と メディアデザイン能力の習得

1 年次から習得してきた種々の情報技術 やメディアデザイン技術、および、実技科 目・卒業研究等を通じて習得した要求定義 能力・プロジェクトの計画・遂行能力を総 合し、広い視点から問題を捉えそれを解決 する問題解決能力と、その手段としてのメ ディアデザイン能力を習得する。

E. メディア技術による表現およびコミュニケーション能力の習得

人々が求める情報を表現するためには、 文章による表現はもちろんのこと、数式や 数値やグラフ等に加えて、CGやアニメー ション、更にゲームのようにインタラクティブなインタフェースを組み合わせる等 様々な手段があります。このように、様々 なメディアの利用も考慮した上で人と人と のコミュニケーションを行う能力を習得します。

(2)コース変更は、原則として認めません。

<コースの特徴>

- ① 様々な履修履歴を持つ学生に対して も柔軟に対応できるよう、文系・理系 の枠を超えた文理融合型のカリキュ ラムを用意します。
- ② 実技科目が多数用意され、多様なメディアコンテンツのデザイン能力や、メディアシステムの企画提案、設計、管理といったプロジェクトマネジメント能力など幅広い知識と、世界を視野に活躍できるコミュニケーション能力の備わった実践的な技術者を育成します。
- ③ 教職課程「情報・高等学校教諭一種免許状」の教員免許状が取得可能です。また、シミュレーション・データサイエンスコースの一部の科目を履修すれば「数学」の教員免許状を取得することも可能です。

<履修について>

卒業研究着手条件や卒業に必要な単位等についてはキャンパスガイドを参照してください。なお、GPA(Grade Point Average)により、各人の履修登録が可能な単位数には上限が設置されています。

数理情報工学科メディアデザインコースのカリキュラムでは、他学科・他コースの専門教育科目で習得した単位(科目担当者に許可を得たうえで受講登録した科目)を最大6単位まで専門教育科目の68単位内に算入できます。

また、以下の項目に注意してください。

(1) 2 年生の前期ガイダンス時にメディア デザインコースに所属する学生を決定 します。メディアデザインコースの定員 は約50名です。希望者の中から本人の 意思を尊重し、1年次後期までの学業成 績(GPA)を参考に選抜します。

コンピュータサイエンスコース

教育分野としては、情報工学分野に焦点を絞り、ソフトウェア開発といった実践的側面を兼ね備えたコンピュータサイエンスの教育を目的としています。特に、産業界の要請等も十分に配慮し、インターネット、マルチメディア、知的情報処理といった「Tの中心となるソフトウェアの要素技術、およびそれらを統合した情報システムの開発技術の習得ができます。情報工学(ソフトウェア)の標準的な基礎科目はもちろん、コンピュータを用いた実技科目が多数用意され、基礎技術力に基づいた実践的な技術力が養われます。

<学習・教育到達目標>

本学部は、その名称にも現れているよう に、ものづくりという実学的側面を重視し た教育を目指してきていました。また、本 学科は長年にわたり数理工学科と称し、理 論的側面を重視する数理工学を教育到達目 標としていました。しかし、数理工学自体 が情報工学と密接に関連する部分が大きく なり、数年前よりカリキュラムは情報工学 の主要科目をほとんど含むものとなり、情 報教育の環境も整備されてきています。さ らに、近年は大半の卒業生がソフトウェア 開発等の情報関連の職業に就くようになり、 本学科の情報教育は産業界から評価される ようになってきています。このように、本 学部学科の伝統、実績、また、学生や社会 の要望、さらには卒業生の活躍分野などに 十分配慮し、

- ・産業界等の社会からの評価と実績のある情報処理分野
- 学部の伝統であるものづくりとしての ソフトウェア開発
- ・学科の伝統である数理的思考としての コンピュータサイエンス

の3点を踏まえ、

ソフトウェア開発といった実践的側面を

兼ね備えたコンピュータサイエンスの教育

を本コースの中核的な学習・教育到達目標 としています。そして、

数理的素養を備え、コンピュータサイエンスに基づいたエンジニアリングデザイン能力と実践的ソフトウェア開発能力を持ち、グローバルな視野のもとで協働して社会の問題解決に挑める技術者

をコンピュータサイエンスコースの育成し ようとする自立した技術者像と定めていま す。

以下に、本コースの学習・教育到達目標及び学習の心得を示します。諸君は、これらのことをよく理解し、その理念に沿って勉学に励まなければなりません。なお、本コースの学習・教育到達目標はつぎの学部の教育目標に沿ったものでもあります。

- ・幅広い教養と経営能力を持ち学生個々の個性・能力を生かして人類の幸福と安全を実現するために考え行動し社会に貢献できる技術者を養成する
- このために技術の進歩に対応できる基礎学力と応用能力及び技術の社会と自然に及ぼす効果と影響について多面的に考える能力を培う

本プログラムの学習・教育到達目標は、 大項目を学科のディプロマ・ポリシーと一 致させ、各大項目にいくつかの小項目を定 めています。このため、本プログラムでは、 学生が 4 年間で卒業要件を満たすように 128 単位習得することにより、いずれの選 択科目の組合せでも学習・教育到達目標の 大項目だけではなくすべての学習・教育到 達目標の小項目を達成できるようにカリキ ュラムを設計しています。 DP1 豊かな教養と自然科学・社会科学に 関する基礎知識に基づき、数理情報工学分 野に関わる技術者としての倫理観を高める ことができる。

DP1.1 【社会科学と教養】

豊かな教養に基づき情報分野の技術者と して社会に貢献する行動ができる能力の 習得

DP1.2 【技術者倫理】

人類の幸福・福祉についての認識を深め、 工学技術の社会への影響を情報セキュリ ティも考慮し、その功罪を含めて判断し て行動できる倫理観および責任感の習得

DP1.3 【自然科学】

線形代数、確率統計、離散数学、物理等 の自然科学の知識に基づき現象を観察で きる洞察力とそれを論理的に考えコンピ ュータシステムに応用できる能力の習得 《補足》20 世紀の物質文明は世の中を豊 かにした反面、様々な負の遺産をもたらし、 21 世紀には大きな負担となって好むと好 まざるとに関わらず継承されています。ま た、過去において、極めて狭い独善的な視 点に囚われた技術者による幾多の非社会的 な行為もありました。このような反省に基 づき、技術指向に陥ることなく、工学が人 類にもたらした幸せと不幸、社会全体ある いは世界全体に及ぼすこれらの両面につい ての認識を深め、工学技術の社会への影響 をその功罪を含めて判断できる倫理観と責 任感を有する幅広い教養をもった技術者の 育成を目指します。また、知的所有権等の 法的側面にも配慮できる技術者の育成を行 います。

教養基礎科目におかれた数学、自然科学の各科目はすべての基礎になるものであり、これらの十分なる理解は何事にも欠かせないものです。また、専門教育科目においても安易に先端の技術分野に進むよりも、基礎学力を重視したカリキュラム構成を用意し、確実な基礎技術力に基づいた応用力のある技術者の育成を目指しています。また、講義科目のいくつかにはコンピュータを用いた実技科目が併設され、実技を通して講義内容が確実に理解できるように、また逆

に講義内容に基づいた実践的な技術力が養われるように考慮されています。特に、プログラミング能力は情報技術全般において必須のものであり、日常的に使用することによって、自由に使いこなせるようになることが必要です。多くの科目で、授業時間あるいは宿題等において実際にプログラム作成等の機会が多く設けられています。日頃から積極的にコンピュータに接し、自ら手を動かすことを厭わず、理論と実践力の相乗効果を果たすように勤めることを望みます。

DP2 国際的視点から、数理情報工学の観点に基づいて必要な情報を収集・分析し、自らの考えを説明することができる。

DP2.1 【グローバルな視点】

民族、地域、文化、あるいは思想等の多様性を理解し、多面的に物事を考え、行動できる能力の習得

DP2.2 【情報の収集・分析】

自らの考えを論理的・客観的に伝えるために必要な情報を収集・分析できる能力の習得

《補足》特定の組織、国、あるいは民族といった限られた視野ではなく、それぞれの多様性を理解し、世界的な視野で価値判断できるような能力をもった技術者の育成を目指します。多面的に考え理解する能力を培うためには、教育プログラム内だけでなく、自ら常に世の中の状況に関心をもつことが必要です。また、このためにも、後での国際的コミュニケーション能力は重要であり、自ら進んで幅広い多用な情報や意見を傾聴し、同時に世界を相手に自らの情報を発信する能力や意識をもつことが求められます。

学生諸君は講義を聞き理解するという受け身の姿勢であってはなりません。シラバスや前回の講義時に知らされた次回の講義内容に関して事前学修したり調査するなどして授業を有意義なものとなるように十分準備しなければならなりません。授業は教員等との双方向のやりとりの時間です。学生諸君は積極的に質問し、自らの考えを述

べ、教員や他の学生諸君と議論することが 求められます。また、授業が終われば、自 ら授業結果を踏まえ理解を再確認し、疑問 点等があればオフィスアワーを利用して教 員にさらに質問したり自ら文献調査するこ とにより、理解を確実にしておかなければ なりません。

DP3 数理情報工学を体系的に理解して得られる情報に基づき、論理的な思考・批判的な思考をすることができる。

DP3.1 【数理情報】

統計的データ処理、シミュレーション、 最適化技術等の数理的な側面およびコン ピュータシステムの原理を支えている数 学を活用して対象の本質や限界を明らか にすることができる基礎学力の習得

DP3.2 【コンピュータシステム】

セキュアなコンピュータシステムの論理 構成およびその主要な要素技術の機能と 実現方法を理解し、システム開発に活用 できる能力の習得

DP3.3 【ソフトウェア開発】

種々の対象分野において、自動化、効率 化、使い勝手の向上等を考慮してソフト ウェアの開発ができる能力の習得

DP3.4 【プログラミング言語】

様々なプログラミング言語の基本的な考え方を理解した上で、個々のソフトウェ ア開発に適切な言語の選択およびそのプログラミングができる能力の習得

DP3.5 【知的情報処理】

魅力的で役立つ情報を提供するための知的情報処理技術等を活用できる能力の習得

《補足》本コースでは、既存の情報技術の習得だけではなく、学科の伝統である数理的視点を重視した情報工学、すなわちコンピュータサイエンスの教育に力を入れています。情報系分野は技術革新が激しく、既存の技術を習得するだけでは技術開発能力を身に付けることができないばかりか、技術革新についていくことさえままならなりません。技術の根源に対する数理的あるいは論理的な視点をもつことが欠かせません。

そのために、教養基盤科目や専門教育科目として、数学、自然科学、情報工学の基礎理論に関する多数の科目が相互に関連付けられて用意されています。また、それらを踏まえた形で、情報工学の各種中核的要素技術に関する科目が設置されています。これにより、ソフトウェアを中心とした情報技術に関して、幅広くかつ相互の関連や底流となる考え方に対する数理的あるいは高理的視点を養い、コンピュータサイエンスに基づいた情報技術開発能力の基礎的素養の養育を行います。

基礎的あるいは理論的な科目は、とかく 具体性が乏しく現実的有り難さが不明瞭な ため、興味を失いがちでありますが、この ように極めて重要な科目であり、しっかり と学習するよう心懸けなければなりません。 そして、最後にゼミナールおよび卒業研究 において、これら学習の成果を各種の問題 解決に応用する経験を積み、問題解決と技 術開発能力への道筋を作ります。

DP4 生産工学及び数理情報工学に関する 視点から、新たな問題を発見し、解決策を デザインすることができる。

DP4.1 【要求定義】

社会、時間、技術、人員等の制約を考慮 し、システムの要求定義(問題設定)が できる能力の習得

DP4.2 【設計・実装・テスト】

必ずしも一つの設計になるとは限らない 要求定義から、設計、プログラミング(実 装) し、作成したプログラムが要求定義 を満たしていることを検証できる能力の 習得

DP4.3 【問題発見と解決策のデザイン】 広い視野から社会の問題を自主的かつ計 画的に認識・発見し、解決できる能力の 習得

《補足》近年、卒業生の大半がソフト開発 等の情報関連の職業に就くようになり、本 学科の情報教育の側面が産業界から評価されています。また、本学部は、その名称に も現れているように、ものづくりという実 学的側面を重視した教育を目指しています。 このような伝統、理念、実績・評価、さらには社会の要請や学生の要望等に十分配慮し、本コースではものづくりとしてのソフトウェア設計・開発能力の育成を重要な目標としています。

多くの科目はソフトウェアシステムの設 計・開発に必要となる情報工学関連の要素 技術習得のために用意されているとみるこ とができます。例えば、形式論理のような 理論的色彩の強い基礎科目でも、システム 開発における要求定義や設計における汎 化・抽象化能力といった論理的思考方法を 身に付けるために重要な素養であります。 さらに、ソフトウェア構築及び演習とプロ ジェクト演習の2科目は、数人のチームで、 与えられた漠然とした要求から、自らスケ ジュールをたて、要求定義を行い(問題解 決)、全ソフトウェア開発フェーズを経て、 システムが完成するまでを経験することで、 ソフトウェアシステムの設計・開発に必要 な各種手法を実技を併せて習得できるよう に用意されています。このようにして、1 年次から習得した種々の科学・技術・情報 関連技術を総合して、社会の要求を解決す るためのソフトウェアシステムの設計・開 発能力を涵養することができます。

DP5 生産工学の視点から、適切な目標と 手段を見定め、新たなことにも挑戦し、や り抜くことができる。

DP5.1 【目標設定と向上心】

視野を広くもち、自らの社会的な役割を 認識し、高い評価を得るよう継続的に向 上心を養うことができる能力の習得

DP5.2 【計画的な実行力】

社会、時間、技術、人員等の制約を考慮し、課題遂行のためのスケジュールを設定して計画的に行動できる能力の習得《補足》本コースの教育の基本的考え方は、教員が一方向的に学生諸君に教えるということではなく、教員は諸君に刺激を与え、諸君が自から学習することをサポートすることであり、多くの宿題や課題等が与えられます。したがって、諸君は日頃から自らの限られた時間と環境および能力を踏まえ、

計画的に課題等を処理しまとめる習慣を身につけなければなりません。ゼミナールや卒業研究は、長期間の課題を与えられた制約の下で、自ら計画を立て、状況に応じて修正し、遂行しまとめる能力を養う上でも重要です。

また、学生諸君の学業実績は成績という 形で評価されますが、学内の評価に満足す ることなく、情報処理技術者試験、英検、 TOEIC、TOEFL のような学外の各種評価 にチャレンジすることを心がけるべきです。 これらの結果により、学内という狭い世界 に留まらず、社会における自らの実力を知 り、更なる研鑚に努力注ぐように努めることを勧めます。

DP6 多様な考えを受入れ、適切な手段で 自らの考えを伝えて相互に理解することが できる。

DP6.1 【国際的なコミュニケーション能力】

簡単な会話・文書などを用いて英語でコ ミュニケーションできる能力の習得

DP6.2 【論理的な表現力】

自らの考えを論理的に表現し、正確に伝えることができる文章能力およびプレゼンテーション能力の習得

《補足》技術者は、自らの考え、提案、企画、あるいは製品等について、グループ内外の人に対して文書あるいは口頭で適切に伝え討議し、まとめていく能力が欠かせません。これらの能力は技術者あるいは技術分野ではこれまで兎角軽視され勝ちでありますが、電子機器等の支援ツールを上手に用い、論理的かつ分かり易い文章を書き、口頭発表する能力は特に情報関連技術者には必須です。更に、ネットワーク社会においては、自らの情報をネットワークの不特定多数の人に対して発信する能力も欠かせません。

本学科の教育では、多くの講義でレポート課題を数多く課し、その結果をプロジェクタ等を用いて発表する場も設けています。また、授業中に質問し、逆に質問に的確に答え、討議することも重視されます。また、

卒業生は国内だけでなく、国際的な場で活 躍することも多いと考えられます。したが って、国際的なコミュニケーションの基礎 的な能力が求められます。そこで、教養基 盤科目の英語関連の科目はもとより、多く の専門の講義科目では英語の技術資料の調 査等を課し、情報技術関連の英語の文書を 読む機会を用意しています。また、ゼミナ ールや卒業研究では、英語による研究概要 の執筆、口頭発表さらに討議の初歩的な訓 練を課します。しかし、諸君はこれだけで なく、学外の種々の機会を積極的にとらえ て英語力の増進に努めなければなりません。 同時に英検や TOEIC 等の学外の評価に積 極的にチャレンジし、自らの英語力を認識 するとともに、向上の励みとすることを勧 めます。しかし、最も重要なのはまず日本 語でのコミュニケーション能力であり、日 本語での論理的なコミュニケーション能力 なくして、国際的なコミュニケーション能 力はあり得ないというのが基本的な考えで す。

DP7 チームの一員として目的・目標を他者と共有し、達成に向けて働きかけながら、協働することができる。

DP7.1 【協働能力】

チームの目的・目標を認識して討議を行い、仕事を遂行できる協働能力の習得

DP7.2 【プロジェクト遂行能力】

エンジニアリングデザイン手段としての ソフトウェア設計・開発において、チーム 全体としての使命を認識して自主的かつ 計画的にプロジェクトとしての作業を遂 行できる能力の習得

《補足》情報技術分野では、研究開発、システム開発、あるいは企画や営業等のいずれにおいても、チームとしての活動が求められることが多いです。そこで、自らの考え、提案、企画、あるいは製品等について、チーム内外の人に対して文書あるいは口頭で適切に伝え討議し、まとめていく能力が欠かせません。さらに、ゼミナールや卒業研究といった科目では、調査結果、研究結果、あるいは自らの考えを文章にまとめ、

プレゼンテーションし、討議することが頻 繁に行われます。また、ソフトウェア構築 及び演習やプロジェクト演習などでは、数 人のチームで、与えられた漠然とした要求 から、自らスケジュールをたて、要求定義 を行い(問題解決)、全ソフトウェア開発フェーズを経て、システムが完成するまでを 経験することを意図しています。このため、 実際にプロジェクトを運営する上で必要な 管理運営能力の訓練も行い、協働作業に必 要な素養も身に付きます。

DP8 経験を主観的·客観的に振り返り、気付きを学びに変えて継続的に自己を高めることができる。

DP8.1 【継続的な学習能力】

技術革新の激しい情報分野の技術者として生涯にわたって自己を研鑽して学習することができる能力の習得

《補足》情報系分野では特に技術革新が激しく、諸君は大学に在籍しているときだけでなく、生涯に渡って、最新の技術を吸収したり創造することが求められます。本学科の教育は全般に渡ってこのような理念に貫かれており、教員が教え、諸君がそれを理解するということではなく、教員は諸君に刺激を与え、諸君が自から学習することをサポートすることであります。

さらに、これらを通じて興味を引くテーマとの出会いを積極的に求め、教員のアドバイスを受けるなどして、授業とは独立に自主的に深く探求することを勧めます。いずれにしても、授業でなければできないこと、事前学修すべきこと、事後学修すべきことを各自認識した上で、学習に自主的かつ積極的に取り組むことが求められます。このような取り組みの繰り返しによって、自主的かつ継続的に学習する姿勢や能力を身につけることができます。

くコースの特徴>

① 国際社会で活躍できる問題解決能力を もった情報処理技術者の育成を目的と し、卒業生には一定レベル以上の実力が 備わっていることを保証する点にあり

- ます。したがって、卒業生は産業界から高く評価されることが期待できます。そのために、学習意欲と一定の学力の双方が備わった学生諸君を対象に、少人数の、木目の細かい、豊富な学習量を伴う厳しい教育が行われ、成績の評価も高いしべルの習熟度に達成していることを要求します。

く履修について>

卒業研究着手条件や卒業に必要な単位等についてはキャンパスガイドを参照してください。なお、GPA (Grade Point Average)により、各人の履修登録が可能な単位数には上限が設置されています。

数理情報工学科コンピュータサイエンスコースのカリキュラムでは、他学科に設置されている専門科目の単位を卒業に必要な単位数に含めることはできませんので、他学科に設置されている専門教育科目を受講する際には十分留意してください。

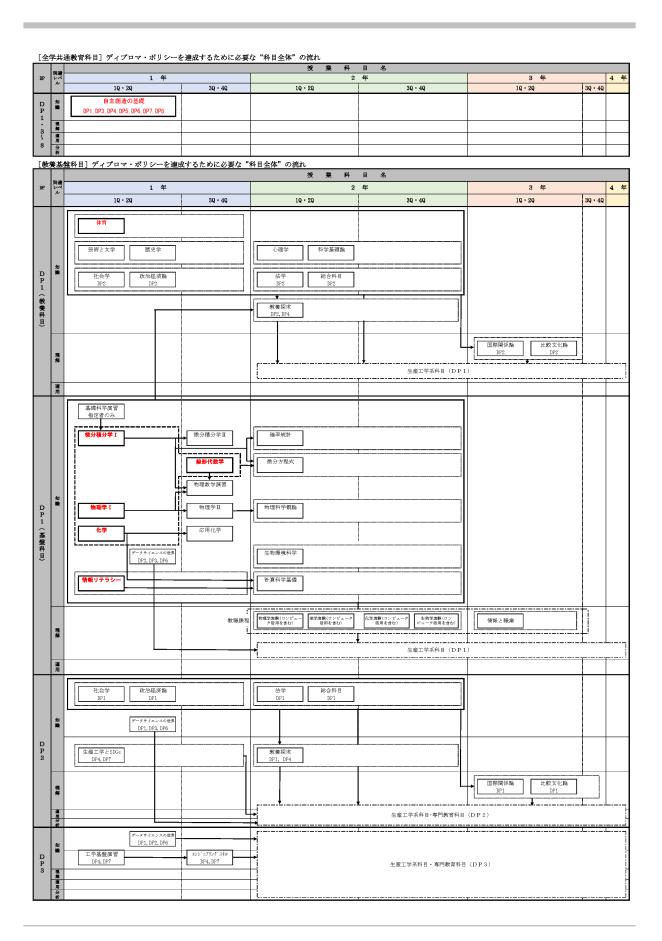
本コースで習得した科目は、他のコース にコース変更した際に同一名の科目に振替 えることができます。

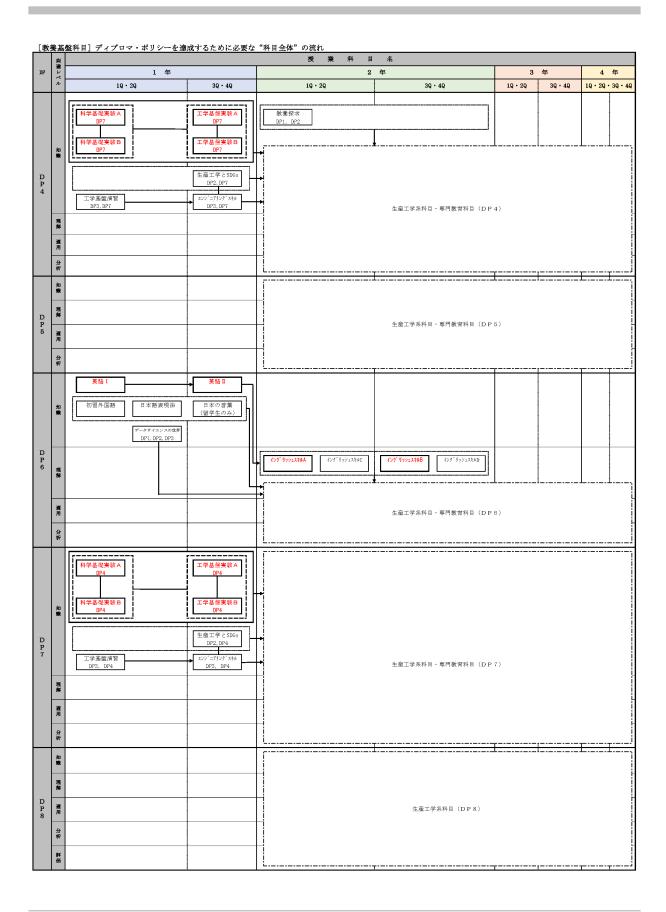
また、以下の項目に注意してください。

(1) 1年生前期のガイダンス時にコンピュータサイエンスコースに所属する学生を決定します。コンピュータサイエンスコースの定員は約40名です。希望者の中から本人の意思を尊重し、面接とプレースメントテスト(入学時に行われる数学の試験)の成績を参考に選抜します。なお、プレースメントテストの数学の成績が学部全体の下位300名の場合はコンピュータサイエンスコースを履修できません。また、定員を上回る希望があった場合は、希望者の内でプレースメントテストの成績の上位約40名までを対象に選考します。

- (2) 各学年の習得単位数によりコース変更が勧告されます。
 - 1年終了目標単位 40単位以上 勧告は単位30単位以下(目標単位 の3/4)
 - 2年終了目標単位 80単位以上 勧告は単位80単位未満 3年終了目標単位110単位以上
- (3) コース変更の申請および承認は、原則として3年前期ガイダンス時までとし、3年後期以降のコース変更は認めません。
- (4) 2年前期ガイダンス時以降のコース変 更は、シミュレーション・データサイエ ンスコースへの変更のみ許可されます。

カリキュラム・ツリーについて

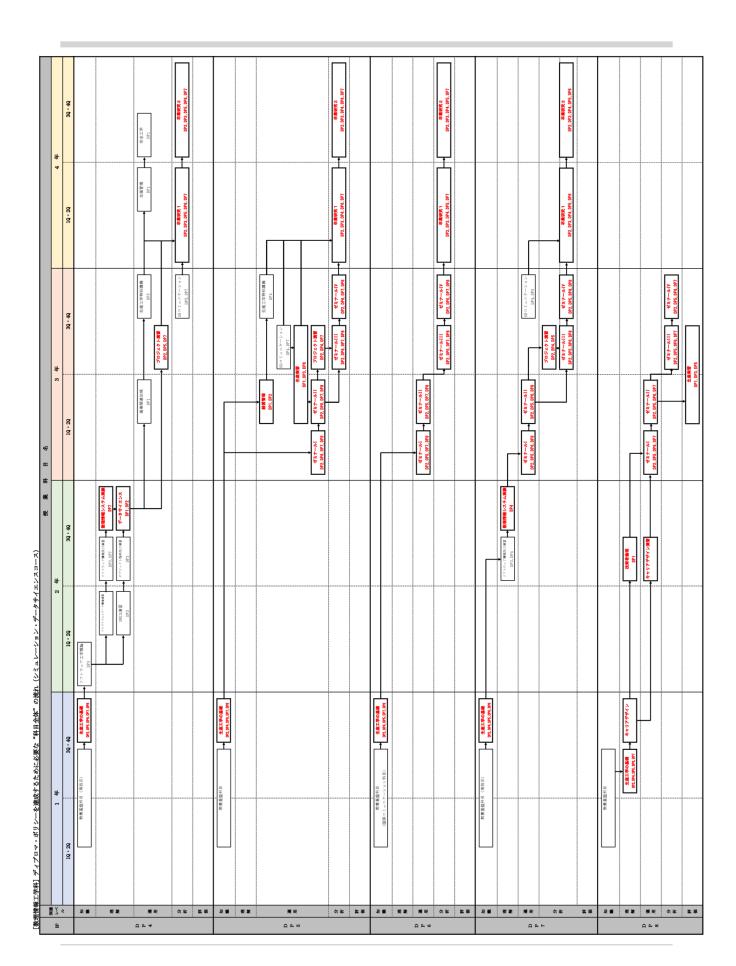

カリキュラム・ツリーは「日本大学教育憲章」に基づき、数理情報工学科における卒業の認定に関する方針(ディプロマ・ポリシー)として示された8つの能力を養成するために、授業科目を能力に当てはめてカリキュラムを体系化し、どのように授業科目を連携して年次配当されているかを示したものです。また、8つの能力を到達目標と考え、その目標に対して授業科目がどの程度の到達度なのかについてもこのツリーには記されています。履修登録にあたっては、卒業研究着手条件や卒業要件をしっかりと確認するとともに、授業科目がどのような能力の修得に結びついているのかも意識して行って下さい。

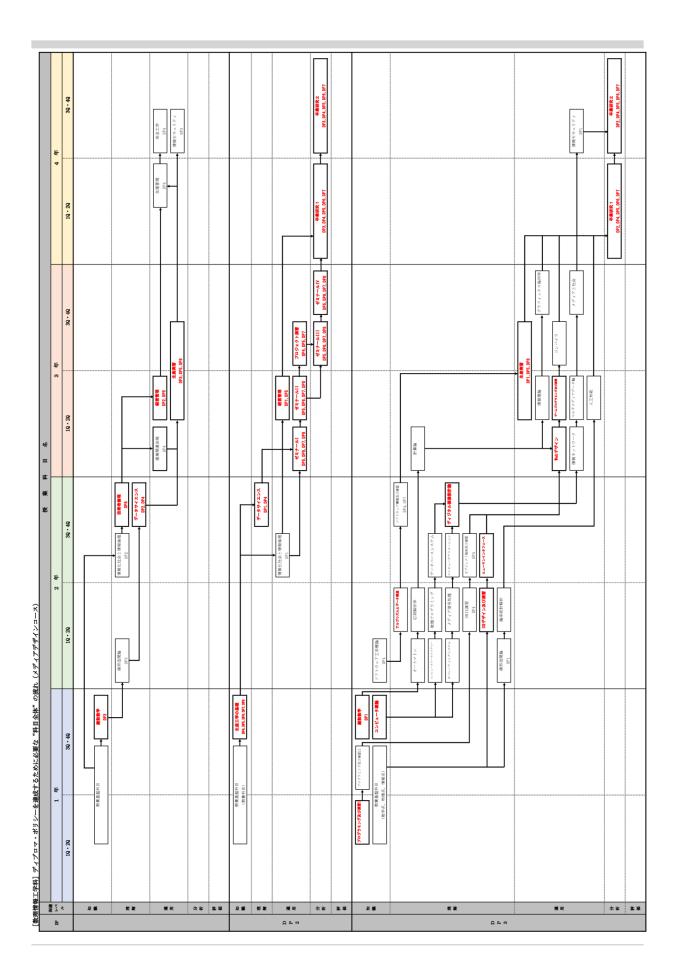

日本大学教育憲章		数理情報工学科における卒業の認定に関		봤(四柱센 구쓰건) > 사) 나 7 환호배白 ^ (두-P D > (라바) > 테 나 7 누시			
自主創造	構成 要素	能力 (日本大学で 身に付ける力)	する方針 (ディプロマ・ポリシー: DP)		数理情報工学科における教育課程の編成及び実施に関する方針 (カリキュラム・ポリシー: CP)		
	自ら学ぶ	豊かな知識・教 養に基づく高い 倫理観	DP1	豊かな教養と自然科学・社会 科学に関する基礎知識に基づ き,数理情報工学分野に関わ る技術者としての倫理観を高 めることができる。	CP1	教養・知識・社会性を培い、数理情報工学分野に関わる技術者として倫理的に判断する能力を育成するために、教養基盤科目・生産工学系科目等を編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題及びレポート等を用いて測定し、各科目の達成目標と成績評価方法(評価基準)に基づいて到達度を評価する。	
		世界の現状を 理解し,説明 する力	DP2	国際的視点から,数理情報工学の観点に基づいて必要な情報を収集・分析し,自らの考えを説明することができる。	CP2	国際的視点から数理情報工学の観点に基づいて必要な情報を収集・分析し、自らの考えを効果的に説明する能力を育成するために、教養基盤科目・生産工学系科目等を編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題及びレポート等を用いて測定し、各科目の達成目標と成績評価方法(評価基準)に基づいて到達度を評価する。	
	自ら考える	論理的・批判 的思考力	DP3	数理情報工学を体系的に理解 して得られる情報に基づき,論 理的な思考・批判的な思考を することができる。	CP3	専門知識に基づき、論理的かつ批判的に思考する能力を育成するために、数理情報工学に関する専門教育科目等を体系的に編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題及びレポート等を用いて測定し、各科目の達成目標と成績評価方法(評価基準)に基づいて到達度を評価する。	
		問題発見・解 決力	DP4	生産工学及び数理情報工学 に関する視点から,新たな問題を発見し,解決策をデザイン することができる。	CP4	新たな問題を発見し、解決策をデザインする能力を育成するために、全 学共通教育科目・教養基盤科目・生産工学系科目・数理情報工学に関 する実技科目等を編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題及び レポート等を用いて測定し、各科目の達成目標と成績評価方法(評価基 準)に基づいて到達度を評価する。	
	自ら道をひらく	挑戦力	DP5	生産工学の視点から,適切な 目標と手段を見定め,新たなこ とにも挑戦し,やり抜くことがで きる。	CP5	生産工学の基礎知識と経営管理を含む管理能力に基づき、新しいことに果敢に挑戦する力を育成するために、生産実習を中核に据えた生産工学系科目等を編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題及びレポート等を用いて測定し、各科目の達成目標と成績評価方法(評価基準)に基づいて到達度を評価する。	
		コミュニケー ション力	DP6	多様な考えを受入れ、適切な 手段で自らの考えを伝えて相 互に理解することができる。	CP6	多様な考えを受入れ、違いを明確にしたうえで議論し、自らの考えを伝える能力を育成するために、コミュニケーション能力を裏付ける全学共通教育科目・教養基盤科目・実技科目等を編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題及びレポート等を用いて測定し、各科目の達成目標と成績評価方法(評価基準)に基づいて到達度を評価する。	
		リーダーシッ プ・協働力	DP7	チームの一員として目的・目標を他者と共有し,達成に向けて働きかけながら,協働することができる。	CP7	新たな課題を解決するために自ら学び、自らの意思と役割を持って他者と協働する能力を育成するために、全学共通教育科目・実技科目等を編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題、レポート及び貢献度評価等を用いて測定し、各科目の達成目標と成績評価方法(評価基準)に基づいて到達度を評価する。	
		省察力	DP8	経験を主観的・客観的に振り 返り、気付きを学びに変えて継 続的に自己を高めることができ る。	CP8	自己を知り、振り返ることで継続的に自己を高める力を育成するために、 全学共通教育科目及び生産工学系科目のキャリア教育に関連する科目等を編成する。 上記の能力は、筆記による論述・客観試験、口頭試験、演習、課題及びレポート等を用いて測定し、各科目の達成目標と成績評価方法(評価基準)に基づいて到達度を評価する。	

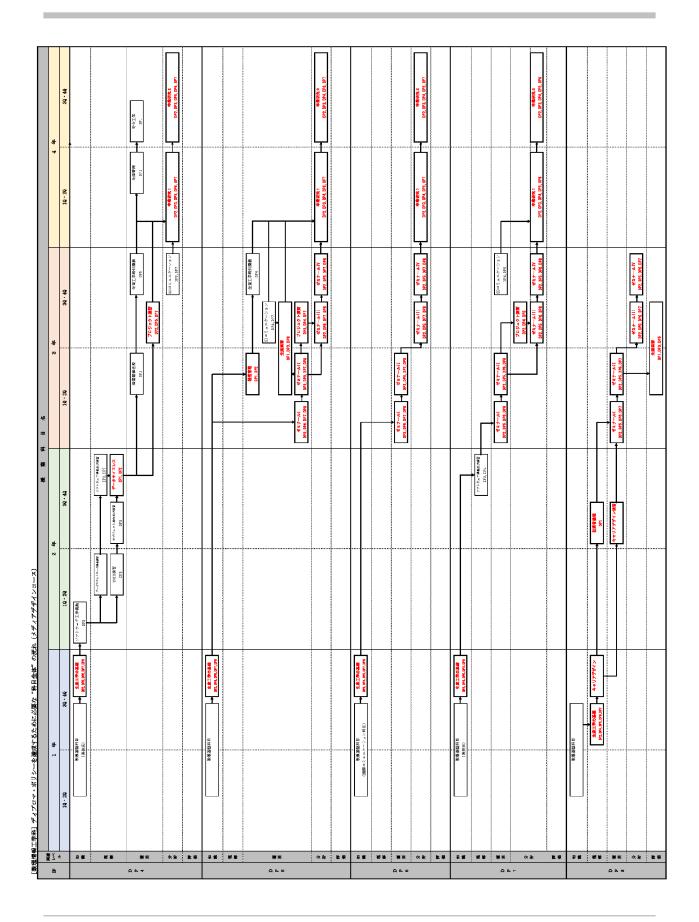
生産工学部ディプロマ・ポリシーに対するルーブリック

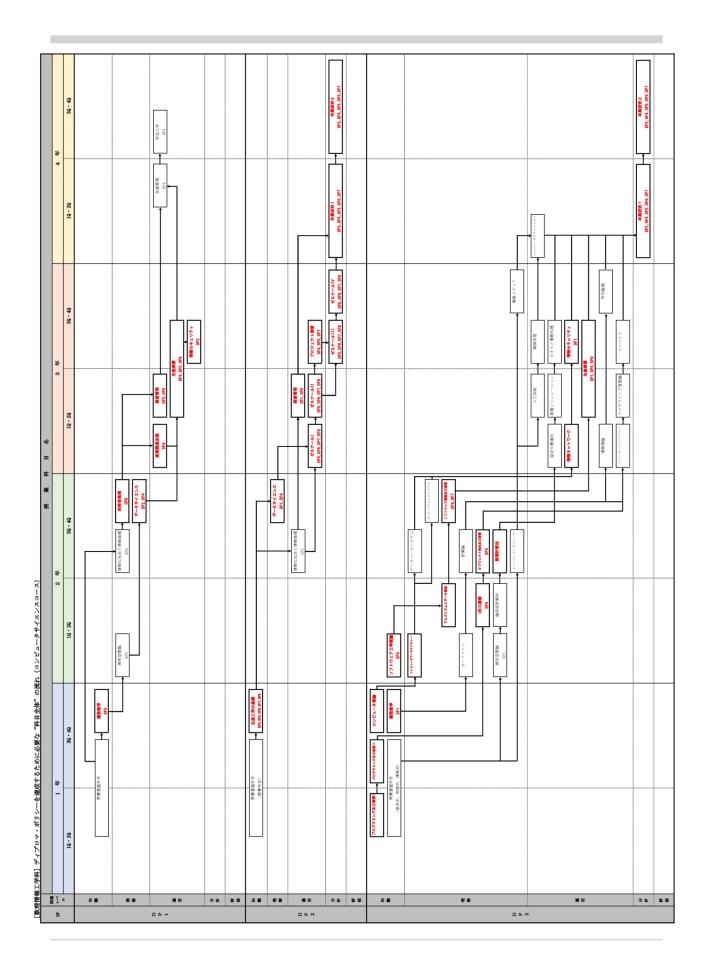
本ルーブリックは、生産工学部全学生のための評価基準表です。生産工学部における卒業の認定に関する方針(ディプロマ・ポリシー)として示された8つの能力を到達目標と考え、到達目標×到達レベルのマトリックスで示されています。到達レベルについては、「教育目標の分類学」を参考にして作成されています。

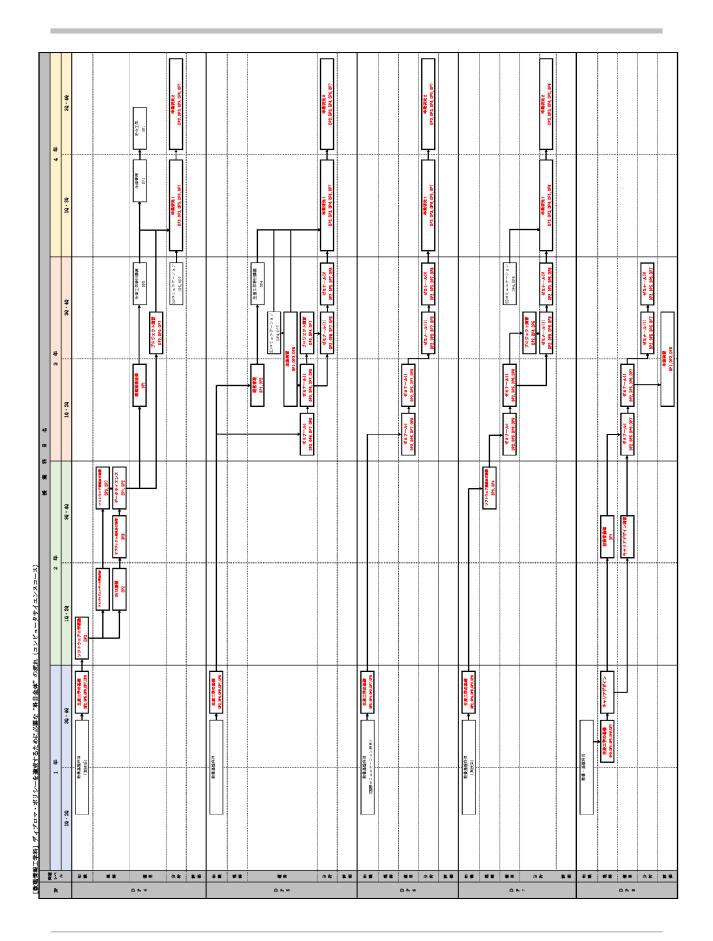
DD					
DP	1. 知識レベル	2. 理解レベル	3. 適用レベル	4. 分析レベル	5. 評価レベル
DP1	人文・社会・自然科学的な視点から人間・文化, 社会,自然について理解することの必要性と,工学技術者としての役割を認識できる.	人文・社会・自然科学的な視点から人間・文化, 社会,自然を多面的に理解することの必要性と,工学技術者としての立場を説明できる.	人文・社会・自然科学的 な視点から多様な社会で 主体的に生きる姿勢と素 養を培い、技術が社会や 自然に及ぼす影響・効果 や工学技術者の責任を 意識して行動できる.		
DP2	人文・社会科学的視点から世界における歴史や政治,経済,文化,価値観,信条などの多様性について認識できる.	人文・社会科学的視点から世界における歴史や政治,経済,文化,価値観,信条などの現状を説明できる.	国際的視点から現状を理解した上で,必要な情報を収集・整理できる.	国際的視点に基づいて収集・整理した情報を分析して、課題解決に活用できる.	
DP3	ある課題や情報に自らの 専門分野の知識が関係し ていること、その際に物事 の原因や過程を論理的・ 批判的に思考することの 重要性について認識でき る.	自らの専門分野の知識に よる課題解決プロセスや 重要な概念について,論 理的・批判的に説明でき る.	解決するために, 専門分 野の原則を理解し, 論理	複合的な課題の中で,課題解決に関連する自らの専門分野の知識を適用し,具体的な実効策を論理的・批判的に選定できる.	
DP4	解決すべき問題から課題を見出し、解決策の創出のために必要な断片的な情報の収集・整理が現状の分析に重要であることを認識できる.	課題の解決に向けて原因を分析するための情報の 収集・分析・整理につい ての基本的な方法を説明 できる.	課題解決のために収集した情報から見出した原因に基づいて解決案を提案できる.	解決すべき問題から課題 を見出し、課題解決のため に技術などの応用を含む 方法の適切な選定を行 い、論理的解決策を提示 できる.	
DP5	新しいことに挑戦するために目標を設定することの重要性を認識ができる.	新しいことに挑戦するための目標・計画を立てる 方法や手順を説明できる。	新たなことに挑戦するために設定した目標や計画に従って行動できる.	新しいことに挑戦する際に, 自らの明確な役割とその責任を認識し, 目標達成に向けて継続的に行動できる.	
DP6		他者とコミュニケーションを とるための適切な手段を 説明できる.	他者とのコミュニケーションにおいて,適切な方法を使用できる.	プロジェクトの実行に関する他者とのコミュニケーションにおいて、相互に理解するための方法を選択し、組み立てた説明により良好な関係を構築できる.	
DP7	効果的に機能するチーム の特徴をリスト化できる.	チームが効果的に機能 するための要因を説明で きる.	チームの一員として効果 的に機能できる.	メンバーの特徴を把握し, 効果的に機能するチーム を組織できる.	
DP8	経験を振り返り, 気付きを 学びに変える重要性を認 識できる.	経験の振り返りに基づく 気付きを学びに変えるた めの方法や手順を説明で きる.	主観的・客観的に経験を 振り返り,気付きを学びに 変えることができる.	主観的・客観的に経験を 振り返り気付きを学びに自 己を高めるために行動でき る.	主観的・客観的に経験を 振り返り,気付きを学びに 変えて継続的に自己を高 めることができる.




[教養基盤科目 (Glo-BE, Entre-to-Be, Robo-BE, STEAM-to-BEプログラム受講者用科目)] ディブロマ・ポリシーを達成するために必要な"科目全体"の流れ 授 業 目 名 到達 2 年 3 年 4 年 DP ル 1Q • 2Q 3Q • 4Q 1Q • 2Q 3Q • 4Q 1Q • 2Q 3Q • 4Q 「ローバル・ビジネスコ ンジニアリング I DP2, DP6, DP7 教養基盤科目(DP2) D グローバル・ビジネスエ ンジニアリング I グローバル・ビジネス ンジニアリング**Ⅲ** 生産工学系科目(DP2) DP2, DP6, DP7 DP2, DP6, DP7 専門教育科目(DP2) グローバル・ビジネスエ ンジニアリング I DP2, DP6, DP7 教養基盤科目(DP6) D P DP2, DP6, DP7 DP2, DP6, DP7 生産工学系科目(DP6) 理解 6 英語コミュニケーショ ン応用**Ⅱ** 専門教育科目(DP6) 英語コミュニケーショ ン基礎 英語コミュニケーショ ン応用 I DP2, DP6, DP7 教養基盤科目(DP7) D グローバル・ビジネスコ ンジニアリング**Ⅲ** 生産工学系科目(DP7) P 理解 専門教育科目(DP7) DP2, DP6, DP7 DP2, DP6, DP7 技術と経営 知 識 教養基盤科目(DP2) D 事業継承者・企業家の実 務 II 事業継承者・企業家の実 務 I 生産工学系科目(DP2) 専門教育科目(DP2) DP4 DP4 Ĺ._._._., 知識 技術と経営 教養基盤科目(DP4) D Р 事業継承者・企業家の実 務 I 事業継承者・企業家の実 務Ⅱ 生産工学系科目(DP4) 理解 専門教育科目(DP4) DP2 DP2 ロボットデザイン入門 知識 生産工学系科目・専門教育科目(DP4) DP4 DP4 DP4 D Ρ トデゥ 践Ⅱ 理解 践I 3 DP4 DP4 ロボットデザイン基礎 ロボットデザイン入門 生産工学系科目・専門教育科目 (DP4) DP3 DP3 D 理解 トデサ 践 I トデサ 践Ⅱ つくりかたマップ D 教養基盤科目(DP1) P 生産工学系科目(DP1) 理解 なんでも作るジム 専門教育科目(DP1) 知識 つくりかたマップ 教養基盤科目(DP7) D DP7 生産工学系科目(DP7)


専門教育科目(DP7)


P



23

1 年次

皆さんが今まで通っていた大部分の中 学・高校では、何年何組というように「ク ラス」に所属していたと思います。クラス に所属することで、学校にも自分の居場所 があるのだといった安堵感がありました。 しかしながら、研究室にゼミ生として所属 する3年次生になるまで、大学には決まっ た居場所がありません。でも、自分で探す ことによって居場所は見つかるのです。皆 さんに探してもらいたい「居場所」とは、 スペース・空間としての場所を言っている のではなく、自分が何をしたいのか、そし て、自分の望む道に向かうために、今どう すべきか、それはどこでできるのか、とい う「心の居場所」を大学で探して欲しいと いう意味です。

大学は、勉強をする場、友人を作る場であると共に、4年間もの時間を自分のためにたっぷり使える自分を見つめ直す場でもあります。入学したばかりの皆さんは、大学に入っていろいろと戸惑うことがあるかと思います。でも、それは、誰にでもあることなのです。戸惑いを素直に受け入れ、戸惑いを払拭するには、受身ではなく、積極的に行動をとる方法しか解決法はありません。

では、受身の姿勢ではいけない例として、 勉強の仕方について述べます。大学の講義 を理解することは、はっきりいって「簡単 ではない」と断言します。事前学修も事後 学修もしないで、ただ単に、講義の教室で 一度だけ話を聞いて、理解できるほど生易 しい内容は無いはずです。高校までの授までの 進め方と違い、内容の難しさと進み方の スピードが速く、さらに、一コマ100分 という講義の長さです。①集中して教員の 話を聞く、②きちんとノートをとる、③教 科書のみならず、その他関係する書籍を図 書館で閲覧し自分で調べる、などを心が てください。それでもわからない場合は 身近にいる友達に教えてもらうのです。是 非、お互いに得意の教科を教えあってくだ さい。ギブアンドテークの関係を作ること は、教えあう関係を持続する秘訣ですし、 得意の分野の講義を友人に教えられる様に 理解しようとするモチベーションにもなり ます。

それでもよく理解できなかった教科には、「本の内容を調べ友達と議論し、このように考えたのですが、先生の御意見をお聞かせ下さい」とか、「どの様な書物を読んだら良いのか教えて下さい」というように、思考した経過を示した上で、担当教員に質問に行きましょう。このように、自分のこれまで払った努力の跡を示してくれるならば、教員は喜んでとことんつき合って教えてくれるはずです。ここに、教員との触れ合いが生まれます。小学生のように「先生これ分かりません、教えて下さい」では、学生と教員との学問を通じたふれあいは生まれません。

1 年次では、教養科目、基盤科目および 専門の基礎科目の受講と単位修得が主眼で す。熱意ある多くの諸君は、早く多くの専 門科目を勉強したいと渇望していることで しょう。しかしながら、大学は専門科目だ けを勉強する場所ではないのです。自分自 身を見つめなおす契機として、リベラルア ーツと呼ばれる教養科目の勉強に励んでく ださい。勉強と並んで、クラブやサークル 活動に参加することも大いに推奨していま す。同級生といった横のつながりだけでは なく、先輩後輩といった縦のつながりだけを学 ぶことや知り合うことも一生の珠玉の財産 となります。

2 年次

津田沼キャンパスに移るころになると大学での生活にも慣れが生じ始めます。しかしながら、ここで油断をしてはいけません。いよいよ待ちに待った専門科目の講義が多くなります。1年次の専門科目と合わせて

これからの専門に対する基礎となるので、 1年次に体得した学修法をさらに強固ななものにして勉学に励んでください。どの教科も重要なものなのですが、3年次にもななて「プログラムを組むのが苦手です」なんてことにならないように、特に基礎的な活義・演習の教科をしっかり理解してくてもいる。2年次で行われる基礎的な教科の内容を理解した上でないと、3年次以降の教科を理解することが大変に困難になります。 講義のわからない箇所は友達と議論したり、信頼のおなど、理解する努力を可以である。 図書館等の参考書を調べたり、信頼のおなして、理解する努力を重ねてください。

3 年次

3年になって直ぐのガイダンス期間中に、ゼミナールを受け入れる研究室の紹介があります。この機会にしっかりと、数理情報工学科にどのような研究室があるのか、そして、そこで行われている研究テーマに何があるかを理解してください。説明会の後、研究室の公開がありますので、興味のある研究室へ訪問し、皆さんが興味のある研究室へ訪問し、皆さんが興味のある研究室の雰囲気はどうなのか、教員の指導方針はどうなのか等、この機会に確認してください。大部分の学生は、卒業研究も含めると2年間、同じ研究室に所属します。自分の肌に合う研究室なのか否かを見極めることは非常に重要です。

ゼミナールに参加するには、「このようなことがしたい。**になりたい。」といった、自分の希望を定める必要があります。ゼミナールは、「やりたいこと、なりたいこと」を実現するためのスタートとなる学修形態です。あるテーマに対して、自ら調べ、読み書き、さらにその成果を皆の前で話し理解させ、コメントに対して誠意ある応対をするという、知的作業の基礎的訓練をする場です。さらに、グループで話し合いながらシステム作成の作業をし、それをドキュメントにまとめるという、エンジニアとしての基礎的訓練もゼミナールのメンバーと

一緒に行います。

3年次の夏には、生産実習、いわゆるインターンシップを行います。これは、夏休みの2週間または4週間の期間を、官公庁や会社に出向き、仕事の手伝いや与えられた課題への指導を受けるものです。社会人として働くという事の意味を痛感してください。さらに、生産実習の経験を通じて、自分に足りないことは何かないか、ど見ール、専門科目、生産実習を通して、卒業研究として何がやりたいのかを自問する大切な時でまたして何がやりたいのかを自問するということを意味します。

4 年次

4年次は、卒業研究を行い卒業論文とし てまとめる、大学生活の総決算の時期にな ります。さらに、就職活動や大学院への進 学準備を行う時期でもあります。研究とは、 3年次までに勉強した講義・演習のように、 結論がわかりきっている決められた内容の 学問を理解し、自分の物とすることではあ りません。研究とは、何か新しいことが知 見として得られるか、または、新しい考え 方を導くことができるかを探求する事です。 つまり、誰も踏んだことのない新雪の上を 歩くようなものです。新しいことを行うこ とは、うまくいかないことも、苦しいこと もあるでしょう。しかしながら、努力によ って研究の成果を導き出すことができれば、 感動を覚えますし、なんと言っても自分に 対する大きな自信が芽生えます。

何が問題なのかを探る問題発見力、解くべき問題をどのように解くのかを見つける問題解決力、そして、問題を解決するために実際に行動する実行力の3つの力を身につけられるように、とことん自分の限界に挑戦してみよう。限界まで自分を痛めつけて追い詰めてみなければ、たくましい成長は見込めません。そのような中でも、卒業研究自体を楽しむように心がけましょう。

ゼミナール

くゼミナールの目的>

ゼミナール (Seminar) とは、大学の研 究室において教員の指導の下に学生自らが あるテーマについて調べ、発表、討論など を行う演習のことです。ゼミナールは、講 義のように教員から一方的に知識が伝達さ れ、その内容を記憶するようなスタイルで はありません。自分で考え、新しい問題に 当たって自分で方法を生み出していく能力 を養うという大学教育の目標に最も適した 教育の場です。ゼミナールでは、各研究室 により内容が異なりますが、学際領域とし ての数理情報工学の諸分野の最新知識に触 れる機会となります。専門領域に対する認 識を確立すると共に、学生同士の交流の場、 大学のキャンパスにおける「居場所」とし ても利用されます。ゼミナールで得た専門 領域に対する認識と知識は、4年次に行う 卒業研究へと通じるアプローチになります。

くゼミナールの実施方法>

ゼミナールは、少人数教育により、研究、 発表、討論などを行う問題意識の高揚を行 うことを目的としています。そこで3年次 のガイダンス時に、各研究室の教員ごとに、 ゼミナールの内容、研究テーマについて、 研究室の様子についての説明を受けます。 さらに、ガイダンス時に行われる研究室紹 介の後に行われる研究室の公開があります。 この機会に、興味のある研究室を見学し、 さらに、教員や研究室の先輩から話しを聞 いてみて、所属を希望とする研究室の選択 を行ってください。ゼミナールは、シミュ レーション・データサイエンスコース、メ ディアデザインコース、コンピュータサイ エンスコースの全てのコースにおいて必修 科目です。

各研究室における研究テーマに沿った課題が提供され、それを実現するために、ゼ

ミナールで一緒になった同級生同士でグループを作ります。各グループにおいて与えられた課題を実現するための方法を検討するミーティングや、今後の作業を規定するドキュメントの作成、コーディング作業、テスト作業、そして、完成したシステムに関するドキュメントの作成を通じて、エンジニアとして必要な協同作業のスキルを身につけることも行っています。

〈ゼミナールの主なテーマ〉

- ○論理回路設計
- ○デジタルシステムの設計とテスト
- OPCクラスタの構築及び並列プログラミング
- ○ポテンシャル問題解析のGUIYフト ウェア開発
- 〇知能情報処理(段々賢くなるソフトウェア)の研究
- ○バーチャルリアリティ
- ○データサイエンス
- ○ディープラーニング
- 〇群の生みだす知能とシミュレーション
- 〇オブジェクト指向
- 〇共分散構造分析
- ○データ圧縮
- 〇共通鍵暗号 公開鍵暗号
- ○画像処理の基礎
- ○カラー画像処理と色覚
- O3DCG ゲーム製作
- ○シリアスゲームの設計と開発
- ○人体数理モデル&スポーツ力学
- ○自動車の音響解析
- ○非線形現象の数理モデルとシミュレー ション
- 〇ヒューマンコンピュータインタラクシ ョン

卒業研究

<卒業研究の目的>

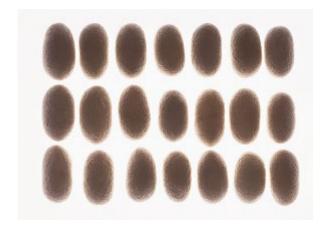
卒業研究は大学生活の総決算とも言える 重要な科目であり、必修科目と指定されて います。卒業研究を通じて過ごした研究室 は、卒業後に社会人となっても、指導教員 とのつながりが財産となる、大学との接点 として役割を果たす場ともなります。卒業 研究は、3年次までに履修した知識を総合 的に活用し、1つのテーマのもとで研究を 行い、その成果を論文の形でまとめあげ発 表するものです。学生は、卒業論文の作成 によって、初めて研究の仕方、材料の集め 方、そのまとめ方、論文の書き方、発表の 仕方等普段の講義によっては得られないも のを会得いたします。その実施に当たって は、指導に当たる教員、大学院生、学友と 十分に討議を重ね、記億力よりむしろ理解 力と創造力を積極的に発揮しなければなり ません。このような思考訓練の機会は、将 来研究者として立つ人ばかりでなく、技術 者や教育者等のブレインワーカーとして社 会で活躍する人にとっても不可欠です。

卒業研究に着手できる人は、卒業要件に係る単位から104単位以上修得の者です。なお、3コースとも卒業要件科目の内、未修得単位数は24単位以下でなければなりません。卒業研究着手者名簿は4月初頭に発表されます。

<卒業研究の実施方法>

どのように卒業研究のテーマを希望し、 決定するかは、各研究室の卒業研究課題を 指導する教員によって異なります。しかし ながら、大まかにでも、興味のあるテーマ がわかっているのであれば、まず、そのテーマを研究している研究室に所属し、それ から、所属研究室の教員との対話や、研究 室内のメンバーとの話し合いを通じ、研究 テーマを絞る方法や、自らやりたいテーマ

を提案することも可能です。研究テーマが 決定したならば、次はいかなる方法で研究 するかを教員からのアドバイスを受けなが らも自分自身でも考え、研究の計画を立て ます。もちろん研究の進行に伴い予期に反 する事情が起こり、計画を変更しなければ ならぬ場合もあります。よって、柔軟性の ある研究の遂行が求められます。しかしな がら、「やってみないとわからない」という 姿勢で無計画に研究を進めることはお勧め しません。大まかな内容であっても、研究 計画を立てることは無駄を無くし、最少の 労力と短期の期日とをもって目的を達成さ せる第一の近道となります。計画の秘訣は、 どのような結果を導きたいのかという「ゴ ール」を明確に設定し、そのゴールへ導く ためには何をすべきか、ということを考え るのです。つまり、研究の遂行とは逆の向 きの流れから物事を考えるのです。研究計 画が決まったなら、今度は材料集めにとり かかります。家の設計図ができ上がったら、 それに基づいて必要な建築材料を集めるの と同じことです。テーマの性質によって、 実験・観察・調査と方法はいろいろありま すが、とにかく材料はテーマ遂行のために 筋の良いもので、かつ、豊富でなければな りません。貧弱なデータの上に大きな論文 を組み立てたのでは、竜頭蛇尾といわれま す。4年生は、12月下旬に卒業研究概要 集の原稿を研究室毎にまとめて数理情報工 学科事務室に提出します。原稿の形式は指 導教員の指示に従うものとします。なお、 この概要は「数理情報工学科卒業研究概要 集」として印刷・製本され、数理情報工学 科の各研究室をはじめ学部内外で永久保存 されます。また、1月下旬に卒業研究本論 文を指導教員経由で数理情報工学科事務室 に提出します。本論文の書き方は、指導教


員の指示に従うものとします。提出された本論文は各研究室に永久保存されます。そして、2月上旬に開催される卒業研究発表会において各自が取り組んだテーマに関する成果を聴衆の前で発表します。発表の内容に関してコメントが寄せられますが、研究の発展につながるように反映させてほしいと思います。2年生、3年生は、卒業研究テーマを選択するとき大変参考となる良い機会ですので、先輩の発表会に積極的に参加してください。

<卒業研究の主なテーマ>

- ○需要予測に関する研究
- ○物理現象のシミュレーション
- ○テスト容易化動作合成
- ○機能的時間展開モデルを用いた順序回 路のテスト生成
- 〇ドントケア抽出技術の低消費電力化へ の応用
- 〇テスト圧縮効率化のためのテストポイント挿入法
- ○乱数生成および統計的乱数検定に関す る研究
- ○人体の数理モデル化に関する基礎研究
- 〇ペトリネット理論による離散事象シス テムのモデル化と挙動解析
- ○数量化 I 類によるコンビニエンススト アの売上予測
- 〇二ューラルネットワーク(脳型情報処理方式)による数独パズルの求解
- 〇二ューラルネットワーク(脳型情報処理方式)による画像処理
- ○複雑流れの数値シミュレーション
- OPC クラスタの構築及び性能評価
- OVR アプリケーションの開発と評価
- ○電磁波ビームの電磁界解析
- ○認証方式・PKI の応用技術
- Oネットワークセキュリティ
- ○データ圧縮アルゴリズム
- ○色覚バリアフリーのための画像処理
- 〇非線形フィルタによるロバストな画像 処理
- ○充足可能性問題の解法を用いたテスト 生成アルゴリズム

- 〇人とロボットのコミュニケーション
- ○生活支援ロボット
- ○災害シミュレーション
- ○液滴の形状の数理モデル
- ○新しいヒューマンインタフェースの開発
- ○英語教育を目的としたソーシャルシリ アスゲーム
- 〇ハードウェアトロイの挿入および検出
- ○自己組織化マップを用いた消費電力解 析
- ○人体の筋骨格数理モデル化研究
- ○自動車の音響&振動特性予測手法研究
- ○長周期地震に対するスカイツリーの制 振装置研究

研究室紹介

新井研究室 23 号館 406 室 aria.masayuki@nihon-u.ac.jp

当研究室では、コンピュータシステムやネットワークシステムの高信頼化(ディペンダブルコンピューティング)に関する研究を行っています。近年、コンピュータシステムやネットワークシステムは我々の生活の中でより重要性を増しており、障害が発生すると社会に大きな影響を与えるのシステムは大規模化、複雑化しており、設計等による誤動作を完全に防ぐことは困難です。我々の研究目的は、一部の要素に誤動作が発生したとしても、全体として正しくサービスを提供可能なシステムを構築することです。

対象となるシステムは様々で、例えば最近の研究では下記のとおりです.

- リアルタイムデータ通信システム (車載用ネットワーク等)
- 分散システム(計算機グリッド)
- ・広域分散システム(P2P等)
- ・劣悪な環境下で動作するコンピュータ (高電磁ノイズ、宇宙環境)

また、故障したシステムを早期に検出・ 排除するための仕組みとして、半導体デバイスやコンピュータシステムの製造テスト、 オンライン自己診断に関する研究も行っています。

研究の進め方としては、まず、対象となるシステムとその故障、障害の影響について調査し、問題を解決する手法について検討します。提案手法の有効性を、計算機シミュレーション、数値計算、理論解析などにより評価します。ハードウェアやソフトウェアを実際に作成し、実機評価を行う場合もあります。このような研究成果を学会、論文誌で発表していきます。

くゼミナール>

当研究室では、やる気さえあれば誰でも 歓迎します。ゼミナールでは、冗長設計や 信頼性評価尺度など、ディペンダブルコン ピューティングの基礎的な技術について勉 強します。また、対象システムであるコン ピュータやネットワークについて学びます。 日本語/英語の教科書や論文の輪講と、パワーポイントによる担当者の発表が中心です。 さらに、プロセッサ回路の試作、モンテカルロシミュレーションの演習を行います。 これらを通して、読解力、英語力、発表力を高め、卒業研究への足がかりにします。

<卒業研究>

卒業研究では、主に下記のテーマから選択してもらいます.

- ディペンダブルネットワークシステム
- コンピュータシステムの故障検出・回 復法に関する研究
- ・半導体デバイスのテスト高精度化に 関する研究
- 情報通信とエネルギーを融合した基盤 技術に関する研究

その他,自分の興味のある対象分野に対して,ディペンダブルコンピューティング技術の適用を考えていくこともテーマになり得ます.

具体的な研究テーマを定め、主体的に研究を進めてもらいます。問題を明らかにし、問題の解決方法を探究する能力を伸ばすことを目標とします。これは、企業への就職、大学院の進学のどちらにとっても大切な能力であると考えます。

伊東研究室 23 号館 506 室 itoh.taku@nihon-u.ac.jp

当研究室では、コンピュータをフルに使った高性能計算や、アルゴリズムに従って生成される自動形状モデリングについて主に研究しています。 加えて、数値計算結果を視覚的に捉えられるように、さらには、モデリングされた物体を正確に表現できるように、可視化技術やコンピュータグラフィックスについても研究しております。

可視化の研究から派生して、最近では、 VR や AR に関連したアプリケーション開 発も行っています。

くゼミナール>

ゼミナールでは、卒業研究で必要になる スキルや、卒論執筆のための文章力等を鍛 えることを目的としています。そのための 題材の一部を、下記に紹介します。

物体の運動シミュレーションと可視化:

物体の単純な運動シミュレーションから入り、少しずつ物理的に考慮するパラメータを増やし、現実に近い結果が得られるシミュレーションにしていきます。結果は物体の座標をプロットすることでも確認できますが、当研究室では Houdini というソフトウェアを用い、シミュレーションのための数値計算と可視化を行っています。

自由テーマでのグループ開発実習:

まず、卒業研究に向けて、興味のあるテーマを各学生に持ち寄っていただき、方向性が似ている学生で3~4名程度のグループを作って頂きます。その後、目的設定や具体的にどういう手順で何を開発するか、そのために必要なものは何で、どういう本や論文を読む必要があるか、分担はどうするか等を話し合い、半期で何らかの成果物が得られるように活動して頂きます。

これまで、Unity を用いて VR や AR のアプリケーションを作成したり、AI の勉強をした上で音声合成ソフトウェアを開発したり、数値計算アルゴリズムについて調査した上で物理現象をシミュレーションしたり

等,様々なテーマで取り組んで頂きました。 3年次に卒研に近いことをすることで,4年 次の実際の卒研にスムーズに移行できます。

<卒業研究>

卒研テーマの主なものを下記に挙げます.

陰関数曲面法による自動形状モデリング

陰関数曲面法は複雑な物体を滑らかに表現できる方法です。本テーマでは、同法をベースに、物体の自動モデリングができるようなアルゴリズムや、物体を正確に表現するための可視化方法について研究します。

最近では、発泡金属と呼ばれる物体の自動形状モデリング法を提案し、学生が国際 会議発表しただけでなく、受賞もしました.

連立1次方程式の高速解法の開発

大規模連立 1 次方程式を解く際には,反 復解法が用いられます.このテーマでは, 反復解法の前処理や並列計算によって,安 定化と高速化を目指します.スパコンで効 率的な計算ができるように,通信の少ない 並列計算アルゴリズムの開発も目指します.

VR・AR アプリケーションの開発

VR・AR は近年の発展が著しく、様々なアプリケーション開発が可能です。当研究室では、これまでに、VR サイクリングシミュレータや VR 避難訓練環境、AR をベースに歴史の勉強をするためのアプリケーション等を開発してきました。その他にもスキーやスキューバ等のスポーツを VR で気軽に楽しめるものや、VR による空手の指導補助アプリケーション等も作成しています。

どのようなテーマであれ、卒研では、自分で計画を立て、忍耐強く様々な情報収集をしながら、長期間取り組むことになります。その過程で、研究室メンバーと苦楽を共にすると思いますが、卒業する頃には一生付き合える仲間になっているでしょう。卒研に熱い気持ちで取り組み、共に頑張りましょう!

浦上研究室 23号館404室 uragami.daisuke@nihon-u.ac.jp

研究テーマは「生命の巧みな情報処理を知り・まねる」ことです。人間や生物は、最先端のコンピュータでも難しい問題をいとも簡単に("いい加減に")解決したり、ロボットにとって判断が難しく停止してしまうような環境でも"たくましく"生き続けたりすることができます。このような人間や生物すなわち「生命」の特徴を、情報処理という側面から数理的に解明し、それを社会に活かす研究を行っています。

たとえば、我々が開発した LS-Q という 手法は、人間の認知バイアス(思い込み) を数理モデルにして人工知能に応用したも ので、人間とコンピュータのそれぞれの優 れた部分をいいとこ取りしたハイブリッド な方法です。現在、研究室で自作した鉄棒 ロボットで LS-Q の性能を検証中です。

<ゼミナール>

ゼミナールでは輪講やグループワークを 通して、卒業研究に必要な知識やスキルを 身につけてもらいます。具体的な内容は以 下の通りです。

機械学習の入門書の輪講:

輪講とは、みなさんが順番に"先生"になって教科書の内容を講義することです。 実験データやシミュレーション結果の解析 に必要な数学を身につけます。

ソフトウェア・ツールのグループワーク:

Scilab(数値計算ソフト:シミュレーションおよび実験データの解析)、ODE(ロボットシミュレータ)、加速度センサ(スポーツデータの計測)、mbed(マイコン:ハードウェアおよびセンサシステム開発)、等々。

論文紹介:

各自の卒論テーマを見据えて関連する研究を調査し、その内容を発表してもらいます。また、学術論文を読むことにより、卒

論執筆に必要な"日本語力"を身につけます。

<卒業研究>

卒業研究において大切なことは完成度ではなく、自分で計画して実行することです。 一年間、1つのテーマを研究し続けること は長いマラソンを走るようなものです。

「作品ではない、道である」

とは、ドイツの哲学者ハイデガーの著作集の冒頭の言葉です。大切なのは「結果」ではなく「過程」です。みなさんの一年間の悪戦苦闘の過程を記録したものが、卒業研究論文になります。現在進行中の卒業研究のテーマは以下のとおりです。

複雑系科学分野(マルチエージェント):

「セルオートマトンと人工生命における 普遍的な生命の創発」,「生物の群れシミュ レーションの戦略ゲームへの応用」,「マル チエージェントシステムにおける物々交換 からの"多様な"貨幣の創発」。

人工知能分野(強化学習):

「人の認知特性を応用した強化学習法による鉄棒ロボットの制御 I 〜シミュレーションによる検証〜」,「人の認知特性を応用した強化学習法による鉄棒ロボットの制御 I 〜実ロボットの製作と実験〜」,「オセロゲーム AI に人の対称性バイアスを応用した効果について」。

スポーツ科学分野(加速度センサ):

「少林寺拳法の"型"の動作解析とその起源について」、「サーフィンの動作解析のためのセンサシステムの開発」、「サッカーの個人技の動作解析からチームプレーのシミュレーションへ」。

岡研究室 23号館403室

oka.tetsushi@nihon-u.ac.jp

学生の皆さん自身が面白いと思うことに大学生活を費やし、社会で役立つ能力を伸ばしてもらうことが本研究室の目標です。研究内容に少しでも興味をもったら、気軽に研究室に来てください。2009年以来、研究室の学生が作ったゲーム・アプリ・映像作品などを紹介します。様々な VR 体験も可能です。

研究分野は、3次元コンピュータグラフィック(3DCG)やコンピュータアニメーションを応用した仮想現実(VR)・拡張現実(AR)アプリケーションやゲームなどのインタラクティブシステムに関するものです。実際にシステム(コンテンツ・ソフトウェア・ハードウェア)を作ることに重点を置いています。アカデミックライティング、発表スキル、統計データ解析の習得と関連資格(情報処理技術者・CG-ARTS 検定など)の取得も推奨しています。

研究分野のキーワード:

- 1. XR VR AR
- 2. 3DCG・アニメーション・ゲーム
- 3. ウェアラブルインタフェース
- 4. マルチモーダル
- 5. ロボット・エージェント・人工知能

上記に関連した数理情報工学科(主としてメディアデザインコース)で学ぶ技術やスキルを応用し、人々の生活を豊かにする研究を行っています。例えば、3DCG、コンピュータアニメーションとゲームプログラミングを応用して、3Dの仮想世界や仮想キャラクタを実現します。スマートフォンやPCだけでなく、ヘッドマウントディスプレイなどを用いることで、仮想世界に没入することや、現実の世界に仮想物体やキャラクタを登場させることが可能です。

<ゼミナール>

ゼミナールは、チームでのプロジェクトに

よる学習(PBL)を行う3年次の授業です。本研究室の3年生は、3-4人のチームを作り、1年間でゲームやアプリを開発することを通じて、様々な知識とスキルを習得します。例えば、ゲームエンジンと統合3DCGソフトウェアを用いて、3Dの仮想世界とアニメーションの作成、プログラミングなどを行って3Dゲーム、VRゲーム、アプリを開発するプロジェクトがあります。希望すれば、チームで映像を制作することも可能です。

関連する専門科目:

- 1. CG デザイン及び演習
- 2. コンピュータアニメーション
- 3. オブジェクト指向
- 4. グラフィックス幾何学
- 5. ゲームプログラミング及び演習

<卒業研究>

研究テーマは、各自が考えた案をもとに 相談して決めます。本研究室の卒業研究は、 「数理・情報・メディア技術を応用した新 しいシステム(コンテンツ・ソフトウェア・ ハードウェア) を自作すること」、そして、 「まだ誰も知らないことを調べ、明らかに すること」の二つを必要条件とします。ま た、研究結果がどのように人の役にたつの か、考えてテーマを決めてもらいます。た だし、それ以外については各自の目標と興 味などを重視します。これまでに実施され た卒業研究は、VR、AR、映像、プロジェ クションマッピング、ゲーム、スマートフ ォンアプリ、ロボット、ユーザインタフェ ースなどに関連するものです。10月から12 月にかけて、研究室で体験者(実験参加者) を募集していますので、興味がある学生は、 是非参加してみてください。また、卒研生 は、開発した VR アプリやゲームを学園祭 で一般公開しています。

財津研究室 23号館 507室 zaitsu.kosuke@nihon-u.ac.jp

当研究室では、ゲームやゲームデザインを、学習をはじめとする様々な社会的実践に実装するためのコンテンツ開発や調査研究に取り組みます。

現在、ゲームはエンターテインメントだけではなく、シリアスゲームやゲーミフィケーションといった概念で様々な社会的課題の解決のために使用されています。これは、ゲームという「遊び」が学びの前提となる要素を備えているためです。人間の原初的な活動である「遊び」の性質を利用した取り組みが広がる一方、ゲームは AI や通信など最新の情報技術を取り込み、人々を取り巻く環境も変化させています。

このような状況を踏まえて、ゲームやゲームデザインを通して、人々がどのような体験をするかを学術的に明らかにするとともに、新たな価値を提供するゲームコンテンツやゲームを用いた取り組みを開発し、社会への実装を目指します。そこで、当研究室では以下のような研究領域で研究を行います。

- ゲームを用いた学習(Game-based learning)の開発・評価に関する研究
- ゲーム、ゲームデザインを用いた 社会課題の解決に関する研究
- ゲームデザインを通した学習に関する研究

当研究室では、ゲームを社会に実装し社会課題の解決に役立てる実学的側面を重視します。そのため、開発と合わせて、評価の側面を重視します。

<ゼミナール>

研究を行うために必要な「知識・スキル」に加えて、研究活動に向かう「態度」を身につける活動を行います。具体的な内容は以下の通りです。

遊び・ゲームに関する基礎的文献の輪読:

人間にとって遊びが持つ意味や、ゲーム およびゲームデザインに関する基礎的な知 識の書かれた文献をゼミ参加者で担当を決 めて読み進めます。

自ら学ぶ力を身につける:

各自の学習・研究テーマを自ら深め、探究 していくための力を身につけます。研究と は何か、研究を進めるための具体的な手順 を学んでもらいます。

ゲーム事例紹介(プレイセッション):

新たな価値を創造するために、既存のゲームコンテンツやゲームデザインを用いたサービスを実際に体験します。事例紹介という形式でコンテンツを分析し、客観的に評価する機会とします。また、卒業研究に向けて取り組むテーマを設定することも目指します。

研究関連論文の紹介:

自らの興味・関心に応じて、研究に関連する論文を紹介、発表をしてもらいます。 ここで発表した論文からリサーチクエスチョンを設定し、卒業研究に向けたプロジェクトの企画立案を行います。

<卒業研究>

当研究室で設定している研究領域の範囲で研究プロジェクトを企画し、数人のグループ単位で研究を進めます。ゼミではプロジェクトチームごとに進捗を発表し、課題を抽出、問題解決を図ります。

卒業研究テーマの例

- 社会課題を解決するゲーミフィケーションの開発と評価
- シリアスゲームデザインが学習者 に与える効果・影響の評価

くその他>

教員は学生の皆さんの学びをサポートするために様々な課題設定や環境整備をしますが、学びの主体はあくまで学生の皆さんです。自ら学ぶ学生を求めます。私もともに学びながら、面白く、意義深いプロジェクトに取り組んでいきましょう。

関研究室 23号館 501室 seki.akiko@nihon-u.ac.jp

メディアとその応用技術を活用した,コンテンツ流通およびコミュニケーションを支援するサービスの基盤技術について研究しています。当研究室で扱う「コンテンツ」とは、音楽、映像、文字などで表現された情報の内容を指し、そこには広告コンテンツが存在し、その付加価値を高め、生活を豊かにすることができます。そこで、当研究室では、コンテンツとメディアの特性を活かした、「コミュニケーションのデザイン」と「安全で使い易いコンテンツの流通経路のデザイン」に取り組んでいます。

・コミュニケーションのデザイン

コミュニケーションには、個人間の対話だけでなく、SNSなどでのロコミの共有や、ロボットやシステムとの対話などが含まれます. これらのコミュニケーションでは、自然言語処理技術や動画処理技術などを活用することで、支援することができます. 例えば、膨大な情報の中から、目的のものを効率よく発見するには、対話の中からニーズを予測し、コンテンツを推薦することで、より早く容易に辿り着けるようになります. 本研究室では、誰もが迷わず快適に活用できるようにするためのコンテンツの流通手法および表現手法を探ります.

・安全で使い易い流通経路のデザイン インターネットは様々な情報を発信し、 アクセスできる環境を提供しています。その反面、著作権や個人情報、プライバシー などの侵害が問題になっており、これらの 保護管理が必要とされています。相反する ことの多い利便性と安全性の両立は、どの ように実現できるでしょうか。この技術的 な実現手法を検討し、提案します。

くゼミナール>

ゼミナールでは、Web プログラミング技術やデータベース、セキュリティーなどのコンテンツ流通を支える技術から、推薦システムや対話システムの仕組みとそこで活用されている機械学習や自然言語処理などの基礎理論について学習します。また、数理情報工学演習では、ゼミナールの内容を活かし、使用者にとっての使いやすさを考慮したインタラクションを伴うシステムの構築をチームで行ないます。

<卒業研究>

卒業研究では、各自の興味や関心に基づいてテーマを設定し取り組みます。ここでは、論理的な思考力と表現力を養うこと、自分で考え、学び、最後までやり遂げる力をつけることを目指します。

卒業研究テーマの例

- コンテンツの類似度を用いたコンテン ツ推薦手法に関する研究
- コンテンツ閲覧者の行動履歴を用いた 嗜好分析と行動支援に関する研究
- □コミ情報を用いた観光地推薦手法に 関する研究
- 対話形式のキャパス案内システムに関する研究
- 学習を支援する図書の検索支援システムに関する研究
- 学習教材共有システムに関する研究
- デジタルコンテンツの著作権管理処理 に関する研究

ゼミナールおよび卒業研究では、積極的に展示会や学会などのイベントへ参加することを勧めます。企業や他大学の研究者・学生との交流を通して、さまざまな立場で物事を考えられる能力や、自分の意見を簡潔に表現できる能力を身につけて、社会へ出てもらいたいとおもいます。

高橋研究室 23号館 505室 takahashi.ayumi@nihon-u.ac.jp

当研究室は構造物、機械、防音材の振動 及び音響解析のための数理モデル化と解析 手法に関する研究を行います。

機械・機器・構造物などが、高速化、高 性能化、軽量化されるにつれて振動・騒音 問題が複雑になり、その振動は機械自身の 性能を劣化させるだけでなく、機械の安全 性を損なうこともあります。これを設計段 階で早期に対策することができれば、安全 性を確保するだけでなく、コスト削減につ なげることができます。これを実現するた め、対象物の数理モデルを構築し、その動 的時の挙動を正しく予測する必要がありま す。

また近年では高性能で安価な PC や OS が普及し、様々な解析ソフトウェアが簡便 に利用できるようになりました。解析ソフ トウェアは様々な製品の設計・開発を行う ため重要なツールとして用いられます。ま た最近の解析ソフトはユーザーフレンドリ ーで、解析した結果も分かりやすいグラフ ィクスで表示されます。しかし、こういっ たソフトウェアの中で行っている計算の原 理、手順を理解しないで、いわゆるブラッ クボックスとして扱うと大変危険です。材 料特性や境界条件の設定ミスで、一見、何 となくそれっぽい結果を導き出すことがで きても、実験と比較してみると全く違った 結果になっていることがあります。従って, ソフトウェアで行っている中身についても しっかり理解する必要があるのです。

またこうした対象物のモデル化や、解析 結果の妥当性を検証する上で、重要となっ てくるのが「実験」です。対象物の物理的 挙動をきちんと把握するだけでなく、自分 たちが解析した結果が本当に正しいのか判 断することができます。

従って当研究室では、こうした対象物のモデル化と、解析ソフトの中で行っている計算を理解し扱うことができる CAE (Computer Aided Engineering)技術者

を育成したいと考えております。

〈ゼミナール〉

前期は、音響の基礎、音響解析手法の勉強、そして自動車を対象とした音響解析を行います。後期は、振動学、振動解析手法の勉強、構造物模型の振動解析及び実験を行います。また当研究室はプログラミング言語として MATALB を用いて数値解析を行い、データの整理は Excel を使います。そしてこれらの結果を Power Point により発表してもらいます。

<卒業研究>

卒業研究は,ゼミナールで学んだことを 発展させ,下記のテーマの通りです。

- ハイブリッド SEA 法を用いた自動車 の音響解析
- Biot 理論を用いた自動車用防音材の音 響特性予測
- 非接触電磁加振器を用いたパネルの固体伝播音解析
- ◆ べき関数型等価線形系解析手法を用いた免震積層ゴムの非線形振動解析
- すべり摩擦型免震の振動解析
- 橋梁壁面の長期モニタリング研究
- 筋電計による筋疲労に関する研究

卒業研究のテーマが決まった後は、テーマ が近い人同士で、基礎の勉強、関連論文の 輪読、研究打ち合わせを週1回行います。

また、「さらに研究を突き詰めたい」、「自 分の能力を伸ばしたい」と考えている人が いれば、大学院の進学をお薦めします。専 門知識を深め、研究を進めて学会等で発表 することで、大企業に就職するためのアピ ールの場にもなります。

谷口研究室 23号館 509室

taniguchi.shigeru@nihon-u.ac.jp

当研究室では、工学的な重要課題を数理とコンピュータを用いて解決する、数理工学について研究しています。数理工学は対象にこだわらず、幅広く研究テーマを設定できることが特徴です。基礎的な研究から応用的な研究まで、解析するためのプログラムを作成し、シミュレーションやデータサイエンスを駆使して研究を行っています。

最近は、超音速で伝播する衝撃波の構造シミュレーションを通してこれまで説明できなかった現象を解明したり、機械学習を用いて材料配合を最適化し新材料を発見するという研究を行っています。近年のコンピュータや AI の発展にともなって重要性を増している分野となっていて、国内、海外を問わず、大学や企業の方々との共同研究を実施しています。

くゼミナール>

卒業研究を進めるための準備として、必要な基礎を身に着けてもらうためのゼミ活動を行います。文献を読んだりプログラムを作成し、内容をスライドやレジュメにまとめて発表を行う輪講形式で実施していきます。この経験を通して研究で必要な基礎知識を習得しつつ、発表方法や議論の方法も学んでもらうことを目標とします。

文献の輪講

定評のある教科書を読み、分担しながら 理解した内容を発表してもらいます。そし て発表内容をもとに全員で議論します。仕 上げとしてそれぞれの興味のあるテーマの 論文を輪講し、卒業研究のテーマ選びにつ なげていきます。

プログラミング演習

研究を行うためにプログラミング能力も必要となるので、Python、Mathematicaなどを用いた演習も行います。文献の輪講で扱う題材の理解を深めるためのプログラムを作成し、内容とともにプログラミング方法も学んでいきます。

<卒業研究>

ゼミナールでの活動を通して皆さんの興味や適性を把握し、それぞれに合ったテーマを設定して卒業研究を進めます。研究では、これまでの既存の知識の勉強とは異なる能力が必要です。卒業研究は、何か新しい問題を解決する必要が出てきた際に、どうすれば解決できるかを実践的に学ぶ場です。卒業研究を通して身に着けてほしいと考えているのは以下のものです。

分かりやすい資料を作成したり、説得力のあるプレゼンテーションを行う能力が卒業後には必須となります。ゼミでの発表を通してこのような能力も身に着けます。

誰も答えを知らないことを研究するため、 すぐ答えが分からないのが普通です。関連 する方々と議論を重ねて研究を進めること になります。このような方法論も学びます。

当研究室の主なテーマ例を以下に示します。これ以外でも、皆さんが興味を持てるテーマがあれば、指導できる範囲でそれらも研究テーマに採用したいと考えています。 基礎的な研究:衝撃波などの強い非平衡現象の数理工学シミュレーション

宇宙ロケットまわりの流れやマイクロナノ流れの解析で重要となる、代表的な長さに対して急激な変化をする流れ現象をシミュレーションしています。「拡張された熱力学」と呼ばれる新しい理論を用いるのが特徴で、衝撃波に代表される波動現象の性質解明を目指しています。

応用的な研究:企業などが持つ実験データ へのデータサイエンス手法の応用

企業ニーズが高い工学的に重要なデータの提供を受け、共同研究という形で解析を展開しています。高分子材料の疲労寿命の予測をしたり、より使いやすい接着剤の配合を提案したりすることが例として挙げられます。数理工学は対象を選ばないので、食品の品質向上なども研究対象となります。

栃窪研究室 23号館407室

当研究室では、情報理論や情報セキュリティが研究テーマです。分りやすく説明すると、

を扱います。具体的なテーマは、

- データ圧縮アルゴリズム
- ・誤り訂正符号
- ・暗号・認証技術の応用
- ・ネットワークセキュリティ
- コンテンツ保護 などです。

ゼミナールや卒業研究では、専門知識の 習得だけではなく、以下の3点も目標とし て取り組んでもらいます。

• 問題解決能力の向上

仕事や研究を進めていくと、次々に新たな問題に直面します。その都度、どのような解決手段があるかを検討し、課題を1つ1つクリアにしていく必要があります。このため、学生には極力自分で問題を解決してもらいたいので必要最小限の助言しか与えないようにしています。その積み重ねが、技術者としての能力の向上だけではなく、やりがいや自信につながると考えます。

・コミュニケーション能力の向上 仕事は、複数人のプロジェクトとして取り組むことがほとんどです。プロジェクトを計画通りに進めていくためには、自分の考えを相手に正しく伝えることと、相手の伝えたいことを正しく理解することが重要です。ゼミナールの資料作成・発表・質疑や卒業研究での研究打合せを通じて、話す力・聞く力を鍛えてもらいます。 tochikubo.kouya@nihon-u.ac.jp
https://tochikubo-lab.jp

• IT スキルの向上

就職すると希望する部署や自分の専門を フルに活かせる部署に配属されるとは限 りません。また、数年で扱う業務が変わ ることもあります。そこで、どのような 業務を担当しても対応できるような基礎 となる IT スキルを研究の過程でしっか りと身につけてもらいます。また、自分 の実力を客観的に評価するために情報処 理技術者試験などの資格試験も積極的に チャレンジしてもらいます。

くゼミナール>

情報理論や情報セキュリティの文献の輪講を行ないます。担当者は事前に割り当てられた箇所をまとめた発表資料を作成し、当日プロジェクタ等を用いて発表してもらいます。前期、後期ともに1回以上発表してもらうことになりますが、前期と後期とで発表者に対する要求が異なります。

前期:

参加者にポイントが伝わる資料作成やプレゼンテーション(資料作成やプレゼンテーションがメイン)

後期:

割り当てられた範囲の深い理解と質問に対する的確な回答(ディスカッションがメイン)

<卒業研究>

テーマが決まると、各メンバーが主体的 に進める研究以外に以下の 2 つを行ないま

グループごとの輪読:

近いテーマのメンバーが参加する基礎となる教科書や関連論文の輪読(週 1~2 回)全員参加の研究打合せ:

研究の進捗報告および課題に対するディスカッション(週1回)

中村研究室 23 号館 504 室 nakamura.yoshihiro@nihon-u.ac.jp

当研究室では、人間と機械、機械を介した人間と人間・人間と環境とのインタラクションについて研究します.

具体的には、わかりやすさ、使いやすさ、 信頼、感動などを生む、「ヒューマンコンピュータインタラクション」の実現を目指します。 そのためには、人工知能やコンピュータシステムなどの情報技術と、人間の心を融合させる必要があります。

そこで、当研究室では現在以下のような研究領域を中心に研究を行っています.

新しいインターフェースモデルの創造と その評価

各人のアイディアを基に、新しいサービスやインタフェースのモデルを構築し、その有効性の評価・検証を行う。 なお、このときのモデルは Web プログラミングにより実現する場合もある.

・Web インテリジェンスを応用した知的インタフェースの研究

さまざまな領域の知識を利用して、エージェントによる高度な検索や、推論による自動化を可能とするセマンティック・ウェブといわれる技術を応用し、今よりも融通の利く、人間に優しいインタフェースの実現を目指します。

・認知や感性などの人間の心の研究

どのようなインタフェースが人間にとってわかりやすいか,使いやすいかなど,人間の認知や感性などの特性について研究します.これには,動的にユーザの理解度や行き詰まりなどの認知状態をセンシングする方法の研究も含まれます.

いずれも、各人のアイディアを基にモデルを構築し、コンピュータシミュレーションや、被験者実験などによって検証するというアプローチが多いですが、これに限定するものではありません。

<ゼミナール>

つぎのような人を求めています:

- 前述のような分野に関心がある人
- ・自分の頭で物事を考え、新しいことにチャレンジする意欲のある人
- グループの一員として行動できる人

具体的には、まず、関連分野の基本的な 文献の輪講を中心に進めますが、単に文献 を理解するだけでなく、皆の前で自分の考 えを発表し、議論することを重視していま す。必要に応じて、計算機を用いたプログ ラム作成の演習もします。これらを通じて、 理解を深め、問題点を認識し、卒業研究へ の道筋をつけます。

<卒業研究>

ゼミナールで習得した知識を基に、各人の興味や、問題意識に基づいて自らテーマを設定することを基本とします。研究の過程ではさまざまな困難が待ち構えていますが、決してあきらめることなく、常に自分の頭で考え、楽しみながら進めば、必ず道は開けるものです。またそのような経験は、近い将来必ず役に立つものになると思います。テーマ設定を始め、研究の進め方、まとめ方などについて定期的に議論しながら進めていきます。卒業研究の成果は学会等において口頭発表できるように努めます。

「研究目標」の達成も大切ですが、研究活動や研究室メンバーとの関わりを通して人間としても大きく成長することを望みます。 意欲のある人の参加を大いに歓迎します。

野々村研究室 23号館402室 nonomura.makiko@nihon-u.ac.jp

別名、非線形科学研究室です。「非線形」 とは、「線形ではない」ことを意味します。 線形で表すことができる現象であれば、原 因と結果に重ね合わせの関係が成立するの で、何がおこるか簡単に想像できますが、 非線形ではそうはいきません。自然界でみ られる複雑な現象には、この「非線形性」 が重要であることが知られています。本研 究室では、生物、化学、物理等という学問 領域にはとらわれず、自然界で形成される 模様や構造の形成メカニズムを、線形でな い(=非線形)数理モデルを使って、明らかに することを目指します。「数学」と「コンピ ュータ」を道具として用いて、「理科」を研 究すると言った方がわかりやすいかもしれ ません。

くゼミナール>

「ゼミナール」と「数理情報工学演習」 では、卒業研究において必要となる、物理 や数学の基礎知識、数値計算法等を学びま す。

前期の「ゼミナール」では、具体的ないくつかの例題を通して、数理モデルの基礎となる微分方程式の意味と解法を理解してもらいます。後期では、論文の輪講も予定しています。「数理情報工学演習」では、一年を通して、ゼミナールで学んだ方程式等を、数値計算していきます。得られた数値計算結果を可視化する方法も、合わせて学んでもらいます。

<卒業研究>

卒業研究のテーマ選びでは、本人の希望を優先したいと考えています。ただし、希望する内容が、私のこれまでの研究からかけ離れている場合、ともに勉強しながら研究を進めていくことになります。そのため、教えてもらえるのを待つのではなく、自ら積極的に勉強し、研究の方向性を決定していくことが求められます。

とくに希望がない人には、3年のゼミナールで輪講した論文に関連したテーマか、こちらから提案したいくつかのテーマの中から選んでもらいます。テーマが決まったら、既存の数理モデルを調べたり、新たな数理モデルを考案したり、それらの数値計算を行って妥当性を検証したり等、主体的に研究を行うことが求められます。

週に一度は集まって、研究の進捗を報告 してもらいます。学術講演会で研究発表が できるよう、計画をたてて研究を進めてく ださい。

藤田研究室 23 号館 401 室 fujita.yoshihisa@nihon-u.ac.jp

当研究室では、実問題を扱ったシミュレーションについて研究しています。実際の装置を覆うような大きな領域で計算をするため、高速化なども必要になります。また、結果を視覚化するためには CG の技術も必要になります。特に、電気などの目に見えないものの可視化は、それだけで研究価値があると言っても過言ではありません。実際の装置を用意することは大変なので、積極的に共同研究を行っています。外部の研究者や学生との交流も頻繁に行うことができます。

くゼミナール>

研究を行うために必要な基礎能力(考える力,形にする力,コニュニケーション能力)の習得を目指します。そこで、皆さんそれぞれが読み解き、スライドにまとめ、発表者としてゼミを行う輪講形式で実施していきます。以上により、それぞれの卒業研究をスムーズに開始できるような準備期間として位置づけています。

・プログラミング言語の輪講

コンピュータ上で思いを形にするためにはプログラミング能力が必要不可欠です。これは、研究活動においても例外ではありません。そこで、代表的なプログラミング言語として C 言語や Python を扱った輪講を行い、より深い理解を目指します。

• 論文輪講

世の中の動向を調べるために、興味のあるテーマの最新論文を読み解き、内容を紹介してもらいます。ここで重要なことは、細かい話よりも概要を理解することです。「研究とは何か?」を理解してもらうとともに、研究のいろはを学ぶことになります。

これまでの皆さんの学生生活(取り組み)を「背景、目的、手段、結果」の枠組みで説明できるようになれば、就職活動でも大いに役立つはずです.

<卒業研究>

それぞれに割り当てられた研究に従事することになります。ゼミでは、進捗や課題などを発表することで問題解決を図るだけでなく、自身の状況を的確に説明できるプレゼンテーション能力も培うことになります。当研究室の主な卒業研究テーマは以下のとおりです:

・電磁波ビームの電磁界解析

電磁波ビームはレーザーなどとも呼ばれており、すでに幅広い分野で活用されています. 近年では渦状の光も存在することが明らかになり、工業利用が期待されています. (静電気である雷が明るく光るように、実は光も電磁波の一種です.) そこで、実用化に向けてシミュレーションを用いた現象解明を行っています. 核融合周辺の実問題を扱うことも想定しています.

・機械学習を用いた物理現象の解析

コンピュータで現象を再現するときには、支配的な法則を簡略化したモデルで表現して計算します。このとき、大部分の現象は既存のモデルで表現できますが、量子力学などで扱われる特殊な環境では適切な法則がわからないため、モデル化ができません。そのようなときに有効なのが機械学習などを用いたモデル化(サロゲートモデル)です。現象論的理解から物理現象の解明に貢献していきます。

• 見えないものの可視化

「百聞は一見に如かず」という言葉の通り、視覚的に捉えることは現象を理解する上で非常に有効な手段です。また、より現実に近づけるために AR/VR などを用いた可視化にも取り組んでいます。

他にも、何か興味のあるテーマがあれば 気軽に相談してください。指導できる範囲 であれば、ぜひ取り組んでもらいたいと思 います。

細川研究室 23 号館 503 室 hosokawa.toshinori@nihon-u.ac.jp

当研究室では、コンピュータ/VLSI(超 大規模集積回路)の設計やテストなどを自 動化するための CAD (コンピュータ援用設 計) ソフトウェアの研究を行っています。 簡単にいいますと、コンピュータハードウ ェアの回路設計、テスト、故障診断、セキ ュリティを、コンピュータを用いて行うた めのソフトウェアを研究しています。この ハードウェアの設計、テスト、故障診断、 セキュリティの問題を組合せ最適化問題と して定式化し、その問題を現実的な時間で、 かつ効率的に解くためのヒューリスティッ クアルゴリズムを考え出し、プログラミン グし、計算機実験を行うことが、主な研究 活動です。このような研究成果を学会、論 文誌で発表していきます。

研究テーマとしましては、

- ・コンピュータのテスト容易化設計 CAD アルゴリズムに関する研究
- ・コンピュータのテスト生成・圧縮 CAD アルゴリズムに関する研究
- ・コンピュータの故障診断 CAD アルゴリズムに関する研究
- •コンピュータのセキュリティ CAD アルゴ リズムに関する研究を中心としています。

当研究室の研究テーマは、産業界でも重要なテーマであり、産学共同研究も積極的に行っていきたいと考えています。

<ゼミナール>

研究室では、次のような人を求めています。

- ・CAD ソフトウェアに興味がある人
- ・理論的解析およびプログラム作成を厭わない人
- コンピュータの中身(ハードウェア)に 興味がある人
- ・大学院に進学し、長期的に CAD ソフトウェアの研究をする人
- ・受身ではなく、主体的に研究にチャレン ジする意欲のある人

- ・協調性のある人
- ・ゼミ合宿、コンパ、ソフトボールなど研究室行事を楽しく盛り上げてくれる人
- 研究室に頻繁に顔を出す人

ゼミナールでは、コンピュータの設計、 及び高位合成・テスト CAD アルゴリズムに ついて学びます。具体的には、前半は講義 中心に進め、後半は輪講形式で担当者がパ ワーポイントを用いて発表し、全員で議論 します。また、実際に簡単なコンピュータ を設計して、実際に実機で動作させる演習 や CAD ソフトウェアを作成する演習も行います。これらを通じて、CAD ソフトウェ アに関する理解を深め、その問題点を認識 し、卒業研究への道筋をつけます。

<卒業研究>

- ・コンピュータのテスト容易化設計 CAD アルゴリズムに関する研究
- コンピュータのテスト生成・圧縮 CAD アルゴリズムに関する研究
- コンピュータの故障診断 CAD アルゴリ ズムに関する研究
- ・コンピュータのセキュリティ CAD アル ゴリズムに関する研究

上記の中から選択してもらいます。その中で具体的な研究テーマを定め、主体的に研究を進めてもらいます。その研究成果を学会で発表することを目標にします。研究は3年ぐらいで1つのテーマを行い、オリジナリティのある研究成果を生み出し、その成果を論文にまとめることが理想です。可能であれば(研究意欲と経済面)、大学院に進学していただき、研究を継続し、CADソフトウェア研究のプロフェッショナルになって産業界や研究機関などで活躍していただきたいと思っています。当研究室で、研究する意欲のある人はwelcomeです。ぜひ、研究室の扉をたたいてください。

目黒研究室 23 号館 409 室 meguro.mitsuhiko@nihon-u.ac.jp

「百聞は一見にしかず」という有名な言葉があります。人間は自身の眼で周りの環境を見ることによって、沢山の情報を得ております。時計を見て「今、何時だ」と理解したり、道路の状況を見ながら自転車に乗ったりしています。普段、無意識のうちに私たちが行っている「見る」という動作を、コンピュータに行わせるにはどのようにしたらいいのでしょうか。さらに、 入間の眼では不可能だった処理が可能になるのでしょうか。

普段、無意識のうちにしている「見る」 という動作を工学的に探求する学問が「画 像処理」です。目黒研究室では、この「画 像処理」に関する研究を進めております。

「画像処理」を実現させる道具として、コンピュータやカメラなどのハードウェアがあります。さらに、撮影した画像のデータに対して、したい処理を実現するためのアルゴリズムを考案し、その動作を実現させるプログラムを組み実行すること、つりカーションの重要な道具であります。人間が無意識のうちに「見る」動作は、「見る」だけで完結しているわけではなく、「見る」だけで完結しているわけではなく、「見る」だけで完結しているわけではなく、「見る」だけで完結しているわけではなく、「見る」とによって、その物体は何であるのか、どのような環境にいるのか等、「認識」するとはどのようなことであるのか、「理解」とは何なのか等、工学の枠を超えた考察も必要です。

工学という殻にとどまらず、我々人間の 視覚や心の領域も考慮に入れた、人を対象 とした画像処理の実現を目指します。興味 とやる気のある諸君と共に、研究をするこ とを希望いたします。

<ゼミナール>

3年生から研究室にゼミ生として所属し、 卒業研究に向けた専門的な知識と、より実 践的なソフトウェア開発能力の習得に努め るため、「ゼミナール」と「数理情報工学演習」を1年間学びます。「ゼミナール」では、ゼミ生ー人一人が画像処理に関する基礎的な書籍を読み、勉強した成果を研究室内で発表します。「数理情報工学演習」では、ゼミ生を数グループに別け、それぞれのグループにおいて画像処理にまつわる課題のの実現に向けて議論し、システムを構築する演習を通じて、グループワークの進め方、議論の進め方、ドキュメントのまとめ方など、講義では得られないより実践的な経験をつみます。過去に行った演習のテーマは以下のとおりです。

(1)見やすい色に変換する Web システム (2)動画から動いている領域を抽出

<卒業研究>

卒業研究では、「新規性」、「信頼性」、そして「有効性」に富んだ新しい研究テーマに、楽しみながらチャレンジしましょう。 その結果として、たくましく社会で活躍できる技術者としての素養を身に着けることができると考えております。 主な卒業研究テーマは以下のとおりです。

(1)色覚バリアフリーシステムの構築

人により、また、加齢や病気により目の 見え方が違っています。本研究では、人の 目の特性、特に、色の見え方の違いにより 生ずる社会的障壁を取り除くための画像処 理システムの構築を目指します。

(2)映像コンテンツの内容に基づく処理

現在、映像の撮影、蓄積、送配信が活発になされています。映像の内容を理解し、映像検索に用いるためのデータであるメタデータの抽出や管理法、さらに、映像の内容の理解につながる研究をします。

(3)新しい画像信号処理アルゴリズムの研究 厳しい撮影条件の下で得られた劣化して いる画像データから、元のきれいな画像を 復元する手法を研究します。

山内研究室 23 号館 201 室 yamauchi.yukari@nihon-u.ac.jp

当研究室では、情報科学を駆使してコンピュータにより賢い動作・作業を行わせることを目標として研究しています。その為、賢い、知的とは何か、知能とはという定義そのものからじっくりと考えることを重要視しています。具体的には次の分野を中心としています。

- 人工知能
- 強化学習
- ・遺伝的アルゴリズム
- 認知科学
- ・ニューラルネットワーク
- ・カオスと複雑系
- 複雑ネットワーク
- 自己組織化

いずれも、まずは基礎となる理論を勉強 し、理解した上で、人のアイデアを活かし て、新しい手法を提案したり、改良したり、 応用したりすることが求められています。

コンピュータシミュレーションによって 検証するというアプローチを基本としてい るので、プログラミングは重要な道具です。

くゼミナール>

3年生のゼミナールでは、上記のテーマをそれぞれが調べたり、論文を読んだりして、その内容について準備をし、発表するという形式でおこなっています。

ゼミナールでは、

- 各自が責任を持って自分の分担箇所を 皆にわかりやすいように発表すること
- わからないことは必ず質問し、わから ないままにしないこと
- ・積極的に発言し、議論に参加することが求められています。自分の発表をするだけでなく、ゼミの一員として貢献してくれることを期待します。

3年生の演習では、グループでプロジェクトに取り組むことを求められています。

必要に応じて、計算機を用いたプログラム作成の演習もしますが、1年次のプログラミング演習 I・II 程度のプログラミングは前提としています。プログラミングは今できなくても、出来るようになろうと努力すること、嫌いでも必要だと受け入れることが求められます。

<卒業研究>

3年次のゼミナール、および演習を通じて、各自が自分でテーマを設定し、そのテーマを一年間を通じてじっくりと、主体的に取り組むことが要求されます。

当研究室では、新しい発見や技術につながる結果も大切ですが、それ以上に、研究に取り組む姿勢や過程を重要視しています。 失敗を恐れずに、そこから何か一つでも学んでいくことが大切です。

卒業研究は一年を通じて取り組みますが、各自で計画を立てて、全体の進捗を管理することも要求されます。また、夏休み中に行われる合宿では、卒業研究の中間発表を行います。卒業研究の成果は、学会で発表できるよう、目標を高く持って取り組んでもらいたいと思います。

卒業研究を通じて研究に深い興味を持った学生には、大学院への進学もサポートします。

学ぶこと、研究することの苦しさ、奥深さ、 楽しさを一緒に味わってみたい学生の皆さ んを歓迎します。

生産実習

生産実習

<意義と目的>

科学技術の発展は大学における基礎的な 理論や実験に負うところが多いですが、実 社会の企業からの要求とか、現実に直面す る実際的な問題提起によるインパクトを受 けて、新しく展開する場合もあります。特 に工学分野では、そのことが重要なことで す。大学と企業の関係は、大学における理 論とか実験に対して、現実問題への適用性、 限界性を確認したり、修正したりするため の場を企業が提供していると積極的に考え ましょう。

そこで在学中に、これから巣立って行く 社会の企業の一員としての模擬体験を行い、 その体験の中で、大学で学んだ知識の現実 の複雑な問題への適用性やその限界性を、 仕事への実践を通じて学んでくる経験は得 難いものがあります。さらに、企業の一員 としての体験を行うことは、単に知識に関 することのみではなく、自分の責任と同時 に組織の中の一員としての役割も果たさる に組織の中の一員としての役割も果たさる による人間的な成長を含む訓練にもな ります。このような企業における貴重な体 験を通して得られる多大な教育効果を制度 化したものが"生産実習"という本学部独 特のものです。

なお、数理情報工学科の生産実習受け入れ先は、毎年、コンピュータシステム関係、 建設関係、製造業、販売業と60~70社の多きにわたっています。

<履修>

生産実習は、原則として3年次の夏休みに行い、実習終了後、報告書を作成し提出することを義務づけています。単位の認定は実習日数、受け入れ側による評価、報告書の採点等を考慮して決定されます。詳細は、3年次4月のガイダンス時に配布され

る履修の手引きを参照してください。

くガイダンス>

数理情報工学科では、4月から6月に数回ガイダンス(実施日に関する掲示に注意)を行い、実習受け入れ先の選択、手続きについて指導を行っています。また、ビジネスマナー講座を開催し、実習先での態度、礼儀、心構えについて注意を与えています。このガイダンスは非常に大切ですから、必ず出席しなければなりません。

大学院

大学院

<生産工学研究科>

日本大学大学院生産工学研究科は津田沼キャンパス内に置かれ、学部における一般及び専門教育を基礎とし、より高度の科学、技術を修め、研究能力を養う2年間の博士前期課程(旧称は修士課程)と更にその上に専攻分野における独創的研究成果を発表することを要求される博士後期課程(旧称は博士課程)があります。それぞれ課程修了時に論文を提出し、審査に合格すれば修士(工学)、博士(工学)の学位が授与されます。

<数理情報工学専攻>

上述の生産工学研究科には7専攻が設置されており、その一つが数理情報工学専攻(入学定員 前期課程10名、後期課程3名)です。

前期課程に進学すると別表に示された修士論文指導者である教授または准教授の研究室に所属し指導を受けることになるので、各研究室の内容についてよく調べておくことが大切です。

なお、大手企業やその関連会社では近年 益々高度な学力を持つ技術者・研究者を要求するようになり、博士前期課程修了者中 心の採用を行う傾向があります。

<奨学金>

大学院生に対しては、修学中の経済的負担を補助するために、次のような奨学金制度が設けられています。

- ① 日本学生支援機構奨学金
- ② 日本大学R. Fケネディ奨学金
- ③ 日本大学古田奨学金
- ④ 日本大学生産工学部奨学金
- ⑤ 日本大学牛産工学部校友会奨学金
- ⑥ 日本大学大学院生産工学研究科博士 後期課程への進学者に対する奨学金

また他機関による奨学金も次第に確立される機運にあります。さらに本学独自の学生負担軽減策として、ティーチングアシスタント給費制度があり、前期・後期の学生の多くが給費生に選ばれ、学部学生のティーチングアシスタントの仕事に当たります。

<入学選考および出願>

学部学生が大学院(博士前期課程)進学 を希望する場合、学部4年次の7月(第1期) と2月(第2期)に行われる学内推薦およ び7月に行われる学内特別推薦制度(学業 優秀な本学生の推薦入学)と、7月と2月 に行われる一般選考(本学および他大学か らの進学希望者から試験により選考する) 制度の選考機会を有します。学内推薦およ び学内特別推薦は学部3年次までの成績の 順位や取得資格等を参考にし、口述試験(専 門科目・外国語・その他) のみによって行 われます。一般選考は筆記試験の英語1時 間30分と、専門科目(数理情報工学専攻 では、数学・情報数学・アルゴリズムとプ ログラミング・情報ネットワーク・コンピ ュータグラフィックスの5科目の中から3 科目選択) 3時間となっています。

出願に必要な書類は、大学院入学志願 票・成績証明書・卒業(見込)証明書など ですが、詳細は、大学院入学試験要項を読 んで下さい。

数理情報工学専攻の学科目

大学院の博士前期課程と博士後期課程の授業科目と担当者は次の通りです。

数理情報工学専攻(博士前期課程)

授 業 科 目	単位数		科目担当	4 者
応用数学特講	2	教 授	博士(理学)	野々村 真規子
メディアデザイン工学特講	2	教 授	博士(工学)	内田 康之
		特任教授	博士(工学)	古市 昌一
数值解析特講	2	教 授	博士(工学)	伊東 拓
固体力学特講	2	特任教授	博士(工学)	見坐地 一人
		講師	博士(工学)	三井 和男
数理計画法特講	2	教 授	博士(工学)	栃窪 孝也
		教 授	博士(理学)	野々村 真規子
		教 授	博士(理学)	浦上 大輔
		教 授	博士(工学)	伊東 拓
流体力学特講	2	講師	博士(工学)	田中 伸厚
計算力学特講	2	講師	博士(工学)	三井 和男
数値計算法特講	2	特任教授	工学博士	角田 和彦
応用代数学特講	2	教 授	博士(理学)	藤田 育嗣
ダイナミックシステム特講	2	特任教授	博士(工学)	見坐地 一人
統計解析特講	2	講師	博士(工学)	櫻井 建成
振動学特講	2	専任講師	博士(工学)	髙橋 亜佑美
情報理論特講	2	特任教授	博士(工学)	西澤 一友
非線形振動学特講	2	講師	工学博士	近藤 典夫
情報論理特講	2	教 授	博士(工学)	細川 利典
メディアシステム工学特講	2	専任講師	博士(国際情報通信学)	関 亜紀子
複雑知能システム特講	2	教 授	博士(理学)	浦上 大輔
アルゴリズム特講	2	教 授	博士(工学)	細川 利典
セマンティック・ウェブ特講	2	教 授	博士(工学)	中村 喜宏
画像解析特講	2	准教授	博士(工学)	目黒 光彦
知能工学特講	2	専任講師	博士(理学)	山内 ゆかり
情報ネットワーク特講	2	教 授	博士(工学)	新井 雅之
機械学習特講	2	准教授	博士(工学)	目黒 光彦
インタラクションデザイン特講	2	教 授	博士(工学)	中村 喜宏
情報セキュリティ特講	2	教 授	博士(工学)	栃窪 孝也
アルゴリズミックデザイン特講	2	講師	博士(工学)	三井 和男
インタラクティブシステム特講	2	教 授	博士(工学)	岡 哲資
情報数学特講	2	講師	博士(工学)	西澤 一友
人間・空間センシング特講	2	准教授	博士(建築学)	遠田 敦

授 業 科 目	単位数		科目担当	á 者	
生産工学特別演習Ⅰ,Ⅱ	2+2	教 授	博士(工学)	栃窪 孝也	
		教 授	博士(工学)	細川 利典	
		教 授	博士(工学)	岡 哲資	
		教 授	博士(工学)	中村 喜宏	
		教 授	博士(工学)	伊東 拓	
		准教授	博士(工学)	目黒 光彦	
		教 授	博士(理学)	浦上 大輔	
		教 授	博士(理学)	野々村 真規子	
		教 授	博士(工学)	新井 雅之	
		教 授	博士(工学)	内田 康之	
		准教授	博士(建築学)	遠田 敦	
数理情報工学特別研究Ⅰ,Ⅱ	3+3	教 授	博士(工学)	栃窪 孝也	
		教 授	博士(工学)	細川 利典	
		教 授	博士(工学)	岡哲資	
		教 授	博士(工学)	中村 喜宏	
		教 授	博士(工学)	伊東 拓	
		准教授	博士(工学)	目黒 光彦	
		教 授	博士(理学)	浦上 大輔	
		教 授	博士(理学)	野々村 真規子	
		教 授	博士(工学)	新井 雅之	
		教 授	博士(工学)	内田 康之	
		准教授	博士(建築学)	遠田 敦	
学 位 論 文					

数理情報工学専攻(博士後期課程)

授 業 科 目	科目担当者			
数理工学特別研究	教 授 博士(工学) 栃窪 孝也			
	教授 博士(工学) 内田 康之			
	教 授 博士(理学) 浦上 大輔			
情報工学特別研究	教 授 博士(工学) 細川 利典			
	教 授 博士(工学) 新井 雅之			
計算工学特別研究	教 授 博士(理学) 野々村 真規子			
	教 授 博士(工学) 伊東 拓			
メディアデザイン工学特別研究	教授 博士(工学) 中村 喜宏			
	教授 博士(工学) 岡 哲資			

就職

就職

受験という厳しい関門をくぐってきたばかりの1年生の学生諸君に、就職の問題を取り上げるのは時期不相応と考える人もいることと思います。しかし、この時期からじっくり将来を考えることが、勉強の方向付けを確かにし、4年間の大学生活をより充実した意義のあるものとすることができます。

就職とは広辞苑でみると「職につくこと」とあり、職とは「(i)担当の務め、またその地位、(ii)生計のための仕事・職業、(iii)身につけた技能」とあります。これを系統的に考えると、身につけた技能を生かして、担当の務めを果たし、それによって暮らしも立てるということになります。

ところが、近年学生諸君の中には、就職というものを履き違えて就社のように考える人が少なくありません。つまり、大企業、公務員になることが最大目標のように考え、それらの会社に入社できればあとはどうにかなるであろうとの甘い考えを抱く学生諸君が近年特に目立ってきています。特に入るにつれ、学生諸君の就職に対しての考え方が、自らの技術を生かせる職場という本来の考え方とは裏腹に、自分の専門とはかけ離れても、安全(潰れない?)な職場を志向するようになってきています。

しかし、過去を振り返ってみれば分かるように、これからの大企業、公務員といっても、時代が推移すればどのようになるか先を予測することはできません。また所属の職場が安定していたとしても、自分の目標とは違って、ただ単に安定のためのみで仕事を選択した場合、長い人生を考えてみれば退屈な人生を歩むことになるかもしれません。

さらに企業の側でも、もはやそんな意欲 の無い人を抱えている余裕はなくなってい ます。今日多くの企業はただ単に人より知 識があるとか、成績がよいということでなく総合的な能力をもった人材を求めるようになってきています。

数理情報工学科では、生産工学部の就職 指導課と一体となり、学生諸君の実力と素 質(性格等)をもとに、就職委員並びに卒 業研究指導教員が諸君の将来の進路につい て日頃から情報を交換し、各自の志望に対 処できるように努力しています。

<就職指導>

3年次に就職指導課主催の就職支援プログラムが開催されます。及び企業研究会があるので掲示に注意し、必要な情報を逃さないようにして下さい。

就職・進路が決定したら速やかに NU 就職ナビに「進路決定届」を登録して下さい。

公務員を目指す

公務員には、国家公務員と地方公務員に 分かれ、さまざまな組織・職種があって、 採用試験もそれだけ種類が多岐にわたって います。

国家公務員の場合、大学卒業程度の試験 区分は、総合職試験・一般職試験・専門職 試験に大別されます。このうち最も高度な 学力と教養、或いは優れた資質を要求され るのが総合職試験であり、第1次試験(基 礎能力・専門の多岐選択式)と2次試験(専 門試験、政策論文試験、人物試験)に合格 すると採用候補者名簿に登録され、志望す る官庁を考慮のうえ成績順に推薦し各省庁 の行う面接、身体検査などに合格して、初 めて採用内定となります。

地方公務員の場合、各都道府県および市により多少異なるが、採用試験方法、出願手続きは、国家公務員と同様のやり方がとられています(詳細は当該機関に問い合わせのこと)。

したがって、公務員受験者は、公立学校の教員の場合と同様に採用試験に合格しても必ずしも採用されるとは限らないから、志願者はあらかじめこの点を心得ておくべきです。また、公務員採用試験の倍率は一般に高いので徹底的に勉強する必要があります。生産工学部では「公務員対策講座」を実施しているので、公務員志望者は1年次から積極的にそれを受講することを勧めます。

各種資格の取得について

<情報処理技術者>

情報処理技術者試験は、情報処理の発展の中核的役割を果たすべき技術者を育成確保するための施策として行われ、情報化時代における1つの技術レベルの目安となる国家試験です。この試験に合格しないと情報処理の業務に従事できないというもので

はありませんが、在学中でも受験ができ、 試験内容も本学科のカリキュラムで学ぶ部 分が多く出題されています。さらに、この 資格を有していると就職時にも有利に取り 扱われることがありますので、沢山の学生 が受験することが望ましいでしょう。

<CG-ARTS 検定試験>

数理情報工学科では、2011年から CG-ARTS 検定試験の団体受験を実施しています。CGクリエーター、Webデザイナー、CGエンジニア、画像処理エンジニア、マルチメディアの5種類、ベーシックとエキスパートの2レベルがあり、いずれもメディアデザインコースの教育内容と密接に関係しています。

<G 検定 E 資格>

ディープラーニング協会が実施しています。G 検定はディープラーニングの基礎知識を有し、適切な活用方針を決定して、事業活用する能力や知識を有しているかを検定します。E 資格は、ディープラーニングの理論を理解し、適切な手法を選択して実装する能力や知識を有しているかを認定します。シミュレーション・データサイエンスコースの教育内容と密接に関係しています。

<教員免許>

中学、高等学校等の教員になるためには、 教育職員免許法に定める所の免許状を有す る必要があります。そのために本学部では 教職課程が設置されています。

教職課程の履修に関しては、"キャンパスガイド" に詳しく述べられているので、受講希望者は熟読して下さい。

<主な就職先>(五十音順)(株式会社省略)

アクセンチュア 東洋エンジニアリング

いすゞ自動車 東芝

イノテック東邦システムサイエンス

インターネットイニシアティブ TOPPAN

エクシオグループ ニコン

SCSK 日本電気

NSD 日本特殊塗料

NEC ネッツエスアイ 日本工営

NCS&A 東日本旅客鉄道

協栄産業 日立産業制御ソリューションズ

京セラ 日立社会情報サービス

KSK 日立ソリューションズ・テクノロジー

ゲオホールディングス 日野自動車

サイバーステップ 富士ソフト

 CIJ
 本田技研工業

 システムズ・デザイン
 三菱自動車工業

ジャステック 三菱スペースソフトウエア

JVCケンウッド 三菱電機

Sky 美津濃

スズキ ルネサスエレクトロニクス

SUBARU ユニリタ

セガ 公務員 公立学校教員 私立学校教員

ダイキン工業

TMSCデザインテクノロジージャパン

TDC ソフト

テラスカイ

こころがまえ

こころがまえ

我々教員にとって、4年間(又はそれ以上)をかけて育てた諸君の先輩を社会に送り出し、ほっとした後、元気一杯で眼をきらきら輝かせ希望に満ちあふれた新入生を迎えることは、新しい年を迎えたという楽しさと共に、新しい責任を感ずるものです。一方、生産工学部の数理情報工学科という日本大学で唯一の学科に入学を許され、この手引を手にする諸君は、これから新しく始まろうとする大学生活に対し大いなる期待とともに幾分かの不安を抱いていることと思います。そこで、最初に、これからの諸君の大学生活の展望と諸君に望むことがらを卒直に述べていきます。

第一に確認しておきたいことは、ここで 勉強するのだという決心です。諸君には入 学に際して、当科が第1志望であるとか、 第2志望であるとかというこもごもの事情 が存在していたかもしれません。しかし迎 える我々の方は、諸君が望んで当科に入学 したということを前提とし全てを考え、教 育していくということです。 これは大変重 要なことであり、この両者間の了解こそ、 大学という制度が成立する基本条件です。 当学科での学修を魅力的で興味深いものに するために我々はいつも努力しているので、 諸君も安心して勉学に励んで下さい。すな はち、一度入学を決断した以上、前向きの 姿勢で進んでいただきたい。入学したその 日から、この心構えをきちんと作ることが、 大学生活に成功をもたらす第一の鍵となり ます。

<大学という知的空間>

大学生活は人生における最長の休暇であるという説があります。この休暇の意味を、ひとりひとりの使い方によっては非常に変わってくる自由な時間と考えるならば、むしろ、この人生最長の休暇を有効に使用するという考え方に立って、大学生活を考え

なければ損です。学ぶこと以外に余り束縛 のない豊富な時間を一つじっくり生かして 見ようと考えるならば、期待にふるえ胸が 高鳴ってくるはずです。

一旦社会に出て、与えられた仕事による 生活を送るようになれば、毎日、仕事をこ なしていくことに追われてしまい、じっく りと物事を考えることが出来なくなるのが、 多くの人の現実です。その中でも自主的・ 創造的に仕事を一つ一つこなしていくため の知的能力を身につける場所こそ、大学で はないでしょうか。科学技術と社会の複雑 化に伴い発生する、困難な問題に対応し、 それを解決するのは単なる知識ではなく、 たくましく強靭な思考力が要求されます。 このような思考力を養うのが大学の目的で す。この点では大学の教育研究は相互的な もので、我々にとっても諸君の若い力の刺 激が必要であり、教える、教わるというこ とだけでなく、共に語り、議論するという 過程によって共に成長することを期待して います。

履修モデル

コンピュータはいまやパソコンだけではなく、携帯電話、テレビ、ゲーム機、カメラなどあらゆるディジタル情報システムに搭載されています。これは、すべてコンピュータサイエンスの産物といえるでしょう。そして、そこには必ずソフトウェアが動作しています。またディジタル情報システムには、画像処理、音声処理、暗号処理、符号化処理などの技術がコンピュータソフトウェアやハードウェアという形で集約されています。ですから、ディジタル情報システムを設計する上で、必要な技術が大き〈2つあります。1つめは、ソフトウェアをプログラミングする技術です。単にプログラミングができればいいというものではありません。プログラムの速度や使用するメモリ量などを考慮した品質の高いソフトウェアをプログラミングするためには、そのディジタル情報システムに搭載されるコンピュータアーキテクチャーを理解した上で、計算量の少ないアルゴリズムやメモリ量の少ないデータ構造を用いなければなりません。2つめは、あらゆるディジタル情報システムで共通に使用されている画像処理、音声処理、暗号処理、符号化処理などの主要技術です。これらの処理をソフトウェアやハードウェアという形で実装するわけです。このように、ディジタル情報システム設計分野では、将来的に電機メーカなどで、ディジタル情報システムに搭載するソフトウェアを開発する仕事、ハードウェアを設計する仕事を希望する学生さんに適しています。

主要関連科目:アルゴリズムとデータ構造、ソフトウェア構築及び演習、プログラミング及び演習 |・||、コンピュータアーキテクチャー、離散数学、組合せ最適化、情報理論、メディア信号処理、アルゴリズムとデータ構造演習、プロジェクト演習その他の関連科目:ソフトウェア工学概論、数理計画法、オブジェクト指向及び演習、コンパイラ、オペレーティングシステム、情報セキュリティ

主な就職先や職業:ディジタル情報システム(携帯電話、パソコン、ディジタルテレビ、ゲーム、ロボット、DVD、ディジタルスチルカメラ、カーナビゲーションなど)のソフトウェア開発・ハードウェア設計、及び設計自動化ソフトウェアの開発、総合電機・半導体・自動車メーカ及びその関連会社

履修モデル:システム工学

電話、携帯電話、マルチメディア、インターネットなどの情報ネットワークに支えられた高度情報化社会において流通する多種かつ大量のデータから、何が大事で何が問題かを発見する問題発見力ならびにその問題の答えを導き出す問題解決力を身に付けることを目標とする。

具体的には、IT(情報技術)あるいはICT(情報通信技術)が、既存の生産活動ならびにビジネスの仕組みを大きく変えるエンジンであるという認識に立ち、情報ネットワーク、インターネット、IT、ICTの知識、使い方、各種プログラミング、ソフトウェア構築などの情報処理系の科目は深くではないにしろ一通り履修するのが好ましい。これら情報処理能力ならびに情報ネットワークの知識を身に付けた上で、現実の生産活動ならびにビジネスシーンにおいて生じる様々な問題を、IT技術、ICT技術を活用して解決する際に不可欠なシステム分析、オペレーションズリサーチ、システム設計、最適化技法、意思決定法などのシステム工学・数理工学系の科目を中心に履修する。

主要関連科目:情報ネットワーク、情報化社会と情報倫理、情報セキュリティ、アルゴリズムとデータ構造、数理計画法、確率統計解析、組合せ最適化、ソフトウェア工学概論等

主な就職先や職業:SE(システムエンジニア)、情報処理技術者一般、その他

コンピュータやインターネットの発達、センサーの普及に伴い、様々な情報が大量に、そして、瞬時に集められるようになりました。ビッグデータとも呼ばれる大量のデータの中から有用なものを選別し、的確なデータ分析をし、問題発見と問題解決を図っていくことが求められています。

昨今のニュースでは、Al(Artificial Intelligence 人工知能)を使って問題解決がなされたといった報道を数多く見聞きします。人工知能と呼ばれる技術自体はいろいろな分野のものを含んでおります。実は、ニュースで扱われている人工知能の大半は、機械学習と呼ばれる人工知能の一分野の技術を使っていることがほとんどであります。機械学習は、データの分析を通じて、有益な定量的・客観的な情報や関連性を導き出す技術です。その機械学習も、もとをただせば、統計学と大いに関連性のある分野であることが分かります。

機械学習に限らず、統計学技術を使って、データを解析する手法全般の分野のことをデータサイエンスと呼ばれております。つまり、世の中の注目を集めている技術こそ、データサイエンスなのです。データサイエンスの分かる技術者は、引く手あまたとなっております。データサイエンティストという職業名も生まれているくらいです。しかしながら、実際には全世界的に技術者の人数も足りておらず、レベルの高い技術者は争奪戦となっております。

数理情報工学科では、データサイエンスに関する講義、演習がすでに設置してあります。 また、データサイエンスを用いて研究をしている教員も複数居ります。データサイエンスを勉強 し、研究する環境があります。ここで、データサイエンティストを目指す場合の履修すべき科 目と科目の狙いについて簡単に説明しましょう。

データサイエンスに必要な三つの素養は、数学、データ解析手法、プログラミングになります。数学は、統計学が主になります。理解を助け、使えるようになるためには、線形代数と微分積分の理解が必須です。データ解析手法としては、人工知能や多変量データ解析、意思決定システムの履修を勧めます。数理計画法は、様々な場面での最適化問題に適用されますので、特に重要です。最後に、プログラミングについてです。実際にデータが与えられたときに、プログラミングにより適した処理を実現できる能力が必要です。また、データを効率的に管理するためのデータベースシステムに関する知識も必須です。

以上の履修モデルに従って、各科目の学ぶ目的を理解したうえで、勉学を進めてください。

主要関連科目:線形代数学、微分積分学」、確率統計解析、線形空間論、数理計画法、 データベースシステム、人工知能、多変量データ解析、データサイエンス、機械学習

主な就職先や職業:データサイエンティスト、システムエンジニア、ソフトウエア開発等

二十数年程前、コンピュータがチェスの世界チャンピオンに勝ち、将棋等でも素人ではコンピュータに勝つことは難しくなってきている。これらのボードゲームは大変知的なものであり、人間に勝つということは、コンピュータが人間に匹敵する知的活動を行えるということを示すものと言える。しかし、碁ではまだ人間に勝つことは難しく、さらにコンピュータが人間のように学習して、チェスや将棋の腕を上げていくようなことはできない。一般に、コンピュータは計算がめっぽう速いが、融通が利かず、考えたり、学習したりすることは苦手で、賢いとは言い難い。

ゲームに限らず、コンピュータが賢くなれば、人間のように高度で知的な情報処理が可能となり、使い易いシステムが実現できる。例えば、人間はキーボードやマウスでコンピュータに処理を指示するが、指示に少しでも間違いがあると処理を受け付けてくれず、人間の意図を察して指示を好意的に解釈してくれることはない。逆に、コンピュータは処理結果をディスプレイに文字やグラフ等で表示するが、表示方法は相手の人間が変わってもいつも同じで、相手の人間の知識や理解に応じて、表示方法や表示内容を変えたりすることはできない。一方、人間同士のやりとりは互いに相手の意図や理解を推察し合いながら行われ、相手の知識や理解を推察しながら、音声、文字、図、絵、表、数式等(マルチメディア)を適切に組み合わせて行われる。これによって、人間同士はスムーズなやりとりができる。一方、コンピュータを使用する場合は、人間がコンピュータに合わせる形で使わざるを得ず、使い難い。人間はコンピュータとも人間と同じようにやりとりすることが居心地いい。

コンピュータを人間のように賢くし、知的な情報処理や使い勝手の向上を実現するための技術が知的情報処理技術である。

主要関連科目:人工知能、メディア信号処理、コンピュータグラフィックス、確率統計解析 その他の関連科目:ソフトウェア工学概論、プログラミング及び演習 |・||、オブジェクト指 向及び演習、アルゴリズムとデータ構造、アルゴリズムとデータ構造演習、ソフトウェア構築 及び演習、プロジェクト演習

主な就職先や職業:コンピュータメーカ(研究所)等の技術開発技術者·研究者、システムエンジニア(SE)、ゲームプログラマ

履修モデル:デザイン・エンジニアリング

コンピュータ技術を活用して製品の設計、製造や工程設計の支援を行うことを CAE(コンピュータ エイデッド エンジニアリング Computer Aided Engineering: CAE)と呼ぶことがあります。計算機支援工学とも言われます。これはコンピュータの特性を最大に利用した技術の一つであるコンピュータシミュレーションを主に製品の設計に利用するものですが、最近では、コンピュータを利用した最適化の技術や知識情報処理の技術と組み合わせることで広義の設計(デザイン)に応用されるようになって来ました。また、対象も建築物や工業製品だけではなく、情報システムや社会的な機構・組織・制度などシステムにまで拡大しつつあります。このような方法によれば、量産品を作る前に実際に試作品を作ったり、製造方法の妥当性を検証したり、また耐久試験などを行う必要がないため、十分な性能を確保した上でコストを合理的に削減することができます。数学をうしろだてとし、コンピュータを駆使してものつくりに貢献したいという学生諸君におすすめします。また、ゲームや CG の分野でリアリティにあふれた表現技術にも応用が期待される領域です。

主要関連科目:モデリング&デザイン、数値シミュレーション、コンピュータグラフィックス、組合せ最適化、数理計画法、複雑系と創発、システム解析、ダイナミックス、計測と制御、プログラミング及び演習 |・||、アルゴリズムとデータ構造、人工知能、データベース

主な就職先や職業:自動車製造、機械製造、建設、その他これら産業に関連する企業における研究開発、シミュレーションや CAD 等のソフトウェア開発

