太陽電池用亜酸化銅(Cu2O)薄膜とインジウムスズ酸化物の性能改善

Improved performance of copper suboxide (Cu2O) thin films and indium tin oxide for solar

cells

日本大学 生産工学研究科 XU JIAWEI , 清水耕作

1 まえがき

現在主流の太陽電池は結晶シリコン太陽電池 である。シリコンのバンドギャップより太陽光ス ペクトルの内 400nm 以下の近紫外光は表面の吸収 係数が大きいため、余剰フォトンエネルギ効果に より、余分なエネルギを熱として放出し、変換効 率が下がることが課題である。

2 目的

変換効率の低下を改善するために、従来よりも 広範囲の波長の光を吸収し、空乏層を広げること ができる材料である約 2.1 eV のバンドギャップ を持つp型半導体である亜酸化銅(以降 Cu₂0)、及 びシート抵抗を下げ、透過率を高めることができ る透明電極の作製条件の検討を行う。

3 実験方法及び評価方法

3.1 Cu₂0 作製作製プロセス

抵抗加熱蒸着法によって 3.6*10⁻⁶ Torr の真空 度の上に Cu を蒸着、各酸化処理した後、XRD を行 う、薄膜内部の成分変化を評価する。Fig.1に素子 構造変化を示す、Fig.2に素子作製の流れを示す。

glass substrate cleaning
Cu deposition
Oxygen plasma treatment
Annealing in air
Physical

Fig.2 Process flow of device fabrication (with Oxygen plasma treatment)

アニール温度の影響を確認するため、温度だけ 調整してアニールを行った。

アニール条件は窒素流量 0sccm で加熱時間を 2 hour とし、管状炉を用いてアニール温度を 100~ 300 ℃に調整し、大気アニールを行った。

アニール後、Cu₂Oの結晶構造を評価するために X線回折(XRD)を用いて、各温度での結晶性の変 化を調べた。XRDの測定結果から、アニール温度が Cu₂Oの結晶相に与える影響を解析した。

3.3 ITO 温度依存性の評価

スパッタリング法を用いて、真空度 1.0 Pa の条 件で ITO 膜を成膜した後、温度を 100~200℃に制 御してアニールを行った。

アニール後、ITO 膜の温度依存性を評価するため、四端子薄膜抵抗計を用いてシート抵抗を測定して評価を行った。

3.4 Cr/N-Si/Cu₂0/IT0 太陽電池の試作及び評価

Cr/N-Si/Cu₂0/ITO 構造の太陽電池を試作し、その性能を評価した。まず、基板として N 型シリコンを使用し、その上に亜酸化銅(Cu₂0)を作製させた。その後、Cr をバックコンタクトとして形成し、 最上部に透明電極として ITO を成膜した。

作製した太陽電池の評価では、IV 特性を測定して評価を行う。

Fig.3に試作太陽電池の断面構造を示す。

Fig.3 Device structure

⁴ 結果および考察

4.1 Cu₂0 温度依存性の評価結果

Fig.4は、温度変化による XRD 測定結果を示し ており、100~300℃の範囲で熱酸化処理を行った 試料の結晶構造の変化が観察できる。高温になる につれ、Cu20のピークが減少し、300℃では Cu0 の生成が確認される。

また、Fig.5は、各温度でアニールを行った試料の表面写真を示している。150℃までの試料はCu20が優勢で、色が安定しているが、200℃を超えると表面が変色し、透明感が減少していることがわかる。これは、Cu20の分解に伴いCu0が生成され、バンドギャップが変化していることが原因と考えられる。

以上の結果から、Cu₂0の最適な生成温度はお よそ 120℃であることが示唆される。この温度で は Cu₂0 の結晶性が安定し、他の相(Cu、Cu0)の 生成が抑えられている。

4.2 ITO 温度依存性の評価結果

Fig.6 Temperature dependence of ITO sheet resistance

Fig.9は、アニール温度に対する ITO 膜のシート 抵抗の変化を示す。温度が 100~160℃の範囲で は、シート抵抗は比較的安定しており、アニール 前のシート抵抗より低くなる。しかし、180℃を 超えるとシート抵抗が急激に増加し、200℃では 100Ω/□を超える値が出た。

以上より、ITO 膜の電気特性は 160℃以下で最 も安定しており、180℃以上の高温では結晶構造 の変化や大気不純物の影響により、シート抵抗が 大幅に増加することが示唆される。したがって、 ITO 膜のアニールにおいて、最適な温度範囲は 160℃までであると考えられる。

4.3 太陽電池の試作の評価

Fig.7 I-V characteristics of Cr/N-Si/Cu2O/ITO solar cell

Fig.7は、試作した太陽電池の発電特性を示している。電圧が増加するにつれて、電流が減少する典型的なダイオード特性が確認できる。また、電流値が非常に低いことから、試作したデバイスの変換効率が十分に高くないことが分かる。

Fig.8 Energy band diagram of Cu₂O/N-Si junction

Fig.8は、Cu₂0とN型シリコン(N-Si)のバンド 構造を示している。Cu₂0のバンドギャップは約 1.8 eVであり、N-Siとの界面で電位差(V_{bi}=1.06 eV)が形成されることが確認される。これによ り、キャリア分離が可能となり、太陽電池として の動作の可能性を確認できる。

5 **まとめ**

本研究では、Cu₂0 および ITO 膜の温度依存性を 評価し、太陽電池の試作とその特性を検討した。 Cu₂0 のアニールに関しては、120℃が最適な温度で あり、この温度で Cu₂0 の結晶構造が安定して生成 されることが確認された。一方、ITO 膜の評価では、 160℃までの範囲でシート抵抗が安定しており、 180℃以上では電気特性が劣化することが明らか になった。

さらに、Cu₂0/N-Si 接合を用いた太陽電池の試作 では、I-V 特性から電流密度が低く、デバイス効率 の向上が課題であることが示された。バンド構造 の解析結果から、Cu₂0の表面準位や界面状態が電 池性能に大きく影響していると考える。

今後の課題として、Cu₂0の結晶品質や界面状態 の改善、ITO 膜の透過率と電気特性の最適化が必 要である。これらの改善により、太陽電池の変換 効率向上が期待される。

参考文献

(1)Li Hai-Tao Jiang Ya-Xiao Tu Li-Min Li Shao-Hua Pan Ling Li Wen-Biao Yang Shi-E Chen Yong-Sheng "Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation" Acta Phys. Sin. vol.No.5 pp. 053301 (2018)