# 太陽電池用亜酸化銅(Cu2O)薄膜とインジウムスズ酸化物の性能改善

Improved performance of copper suboxide (Cu2O) thin films and indium tin oxide for solar cells

日本大学 生産工学研究科 XU JIAWEI , 清水耕作

#### 1 まえがき

現在主流の太陽電池は結晶シリコン太陽電池である。シリコンのバンドギャップより太陽光スペクトルの内 400nm 以下の近紫外光は表面の吸収係数が大きいため、余剰フォトンエネルギ効果により、余分なエネルギを熱として放出し、変換効率が下がることが課題である。

### 2 目的

変換効率の低下を改善するために、従来よりも 広範囲の波長の光を吸収し、空乏層を広げること ができる材料である約 2.1 eV のバンドギャップ を持つ p 型半導体である亜酸化銅 (以降  $Cu_2O$ )、及 びシート抵抗を下げ、透過率を高めることができ る透明電極の作製条件の検討を行う。

### 3 実験方法及び評価方法

#### 3.1 Cu<sub>2</sub>0 作製作製プロセス

抵抗加熱蒸着法によって 3.6\*10<sup>-6</sup> Torr の真空 度の上に Cu を蒸着、各酸化処理した後、XRD を行 う、薄膜内部の成分変化を評価する。Fig. 1 に素子 構造変化を示す、Fig. 2 に素子作製の流れを示す。



Fig.1 Device structure and structural changes

glass substrate cleaning
Cu deposition
Oxygen plasma treatment
Annealing in air
Physical

Fig.2 Process flow of device fabrication (with Oxygen plasma treatment )

アニール温度の影響を確認するため、温度だけ 調整してアニールを行った。

アニール条件は窒素流量 0sccm で加熱時間を 2 hour とし、管状炉を用いてアニール温度を 100~ 300 ℃に調整し、大気アニールを行った。

アニール後、 $Cu_20$  の結晶構造を評価するために X 線回折(XRD)を用いて、各温度での結晶性の変化を調べた。XRD の測定結果から、アニール温度が  $Cu_20$  の結晶相に与える影響を解析した。

#### 3.3 ITO 温度依存性の評価

スパッタリング法を用いて、真空度 1.0 Pa の条件で ITO 膜を成膜した後、温度を  $100 \sim 200 ^{\circ}$  に制御してアニールを行った。

アニール後、ITO 膜の温度依存性を評価するため、四端子薄膜抵抗計を用いてシート抵抗を測定して評価を行った。

## 3.4 Cr/N-Si/Cu<sub>2</sub>O/ITO 太陽電池の試作及び評価

 $Cr/N-Si/Cu_20/IT0$  構造の太陽電池を試作し、その性能を評価した。まず、基板として N 型シリコンを使用し、その上に亜酸化銅  $(Cu_20)$  を作製させた。その後、Cr をバックコンタクトとして形成し、最上部に透明電極として IT0 を成膜した。

作製した太陽電池の評価では、IV 特性を測定して評価を行う。

Fig. 3 に試作太陽電池の断面構造を示す。



Fig.3 Device structure

# 4 結果および考察

### 3.2 Cu<sub>2</sub>0 温度依存性の評価

### 4.1 Cu<sub>2</sub>0 温度依存性の評価結果



Fig.4 XRD chart of Temp change treatment



Fig.5 Difference in device surface

Fig. 4 は、温度変化による XRD 測定結果を示しており、 $100\sim300$   $\mathbb{C}$  の範囲で熱酸化処理を行った試料の結晶構造の変化が観察できる。高温になるにつれ、 $Cu_2O$  のピークが減少し、300  $\mathbb{C}$  では CuO の生成が確認される。

また、Fig. 5 は、各温度でアニールを行った試料の表面写真を示している。150℃までの試料はCu<sub>2</sub>Oが優勢で、色が安定しているが、200℃を超えると表面が変色し、透明感が減少していることがわかる。これは、Cu<sub>2</sub>Oの分解に伴いCuOが生成され、バンドギャップが変化していることが原因と考えられる。

以上の結果から、 $Cu_20$ の最適な生成温度はおよそ 120 であることが示唆される。この温度では  $Cu_20$  の結晶性が安定し、他の相(Cu、Cu0)の生成が抑えられている。

### 4.2 ITO 温度依存性の評価結果



Fig.6 Temperature dependence of ITO sheet resistance

Fig. 9 は、アニール温度に対する ITO 膜のシート抵抗の変化を示す。温度が  $100\sim160$   $^{\circ}$   $^{\circ}$  の範囲では、シート抵抗は比較的安定しており、アニール前のシート抵抗より低くなる。しかし、180  $^{\circ}$  を超えるとシート抵抗が急激に増加し、200  $^{\circ}$  では 100  $^{\circ}$   $^{\circ$ 

以上より、ITO 膜の電気特性は 160℃以下で最も安定しており、180℃以上の高温では結晶構造の変化や大気不純物の影響により、シート抵抗が大幅に増加することが示唆される。したがって、ITO 膜のアニールにおいて、最適な温度範囲は160℃までであると考えられる。

### 4.3 太陽電池の試作の評価



Fig.7 I-V characteristics of Cr/N-Si/Cu2O/ITO solar cell

Fig. 7 は、試作した太陽電池の発電特性を示している。電圧が増加するにつれて、電流が減少する典型的なダイオード特性が確認できる。また、電流値が非常に低いことから、試作したデバイスの変換効率が十分に高くないことが分かる。



Fig.8 Energy band diagram of Cu<sub>2</sub>O/N-Si junction

Fig. 8 は、 $Cu_20$  と N型シリコン(N-Si)のバンド 構造を示している。 $Cu_20$  のバンドギャップは約 1.8 eV であり、N-Si との界面で電位差( $V_{bi}$ =1.06 eV)が形成されることが確認される。これにより、キャリア分離が可能となり、太陽電池として

の動作の可能性を確認できる。

### 5 まとめ

本研究では、 $Cu_20$  および ITO 膜の温度依存性を評価し、太陽電池の試作とその特性を検討した。 $Cu_20$  のアニールに関しては、120 でが最適な温度であり、この温度で  $Cu_20$  の結晶構造が安定して生成されることが確認された。一方、ITO 膜の評価では、160 でまでの範囲でシート抵抗が安定しており、180 で以上では電気特性が劣化することが明らかになった。

さらに、Cu<sub>2</sub>O/N-Si 接合を用いた太陽電池の試作では、I-V 特性から電流密度が低く、デバイス効率の向上が課題であることが示された。バンド構造の解析結果から、Cu<sub>2</sub>Oの表面準位や界面状態が電池性能に大きく影響していると考える。

今後の課題として、Cu<sub>2</sub>0の結晶品質や界面状態の改善、ITO 膜の透過率と電気特性の最適化が必要である。これらの改善により、太陽電池の変換効率向上が期待される。

## 参考文献

(1)Li Hai-Tao Jiang Ya-Xiao Tu Li-Min Li Shao-Hua Pan Ling Li Wen-Biao Yang Shi-E Chen Yong-Sheng "Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation" Acta Phys. Sin. vol.No.5 pp. 053301 (2018)