CO₂/O₂/N₂ファインバブルの導入による 製塩苦汁からのドロマイトの生成促進

日大生産工(学部)○黒崎 智弘, 日大生産工(院)白石 優成, 日大生産工 亀井 真之介 下村 修一, 高橋 岩仁, 塩事業セ・海水総研 正岡 功士, 日大生産工 松本 真和

1. 緒言

近年,地球温暖化をもたらす温室効果ガスの 一つであるCO2の排出量削減が急務となって いる。一方, 製塩プロセスでは, イオン交換膜 を用いた電気透析(ED)により海水を濃縮した 後, 蒸発晶析によってNaClを回収し, 苦汁を排 出している。その際,石炭燃焼ボイラーで発生 させた蒸気を用いてEDに必要な電力を発電す るとともに、タービン背圧蒸気を蒸発晶析の熱 源に利用している。製塩プロセスの高効率化を 図るためには、苦汁中のKをKClとして回収し た後の脱K苦汁中に高濃度で溶存するCaおよ びMgの新規回収・高品位化法の開発が不可欠 となっている。上記の二つの課題を同時に解決 するための手法として, 製塩プロセスから排出 されるボイラー排ガス中のCO2と脱K苦汁との 反応晶析による炭酸塩の製造が考えられる。特 に、炭酸カルシウムと炭酸マグネシウムの複塩 であるドロマイト(CaMg(CO₃)₂)は耐火材,充 填剤,食品および医薬品添加物として幅広く利 用されており,用途に応じて高機能化を図るた めには1.0のMg/Ca比を有するCaMg(CO₃)2の製 造が望まれている。一般に、CaMg(CO₃)2の合成 ではバルク溶液中のイオン濃度積の増加にと もないMg/Ca比が増大傾向を示すことから, Mg/Ca比を1.0に近似させるためには晶析操作 において高いCa²⁺, Mg²⁺およびCO₃²⁻濃度が必 要となる。本研究では、製塩ボイラー排煙の脱 硫・脱硝後の排ガス組成のCO₂/O₂/N₂混合ガス をファインバブルとして脱K苦汁に導入する ことで、CaMg(CO3)2の製造を試みた。気泡の微 細化は、気-液界面積・気泡の平均滞留時間の 増大にともなうCO2ガス吸収の促進,およびフ ァインバブルの負の表面電位特性に起因する 微細な気-液界面近傍でのCa²⁺・Mg²⁺の濃縮に よる局所的なイオン濃度積の増大をもたらす^{I)}。

本稿では、CO₂/O₂/N₂気泡の平均気泡径(dbbl)が

脱K苦汁からのCaMg(CO3)2の反応晶析現象に

及ぼす影響について述べる。

2. 実験装置および方法

2.1 脱K苦汁

製塩企業より提供を受けた脱K苦汁を用いた。主要成分の濃度はMgCl₂, NaCl, CaCl₂が 各々2.1, 0.8, 0.7 mol/Lである¹⁾。

2.2 半回分式晶析装置

旋回・剪断式のファインバブル発生器を組み 込んだ半回分式晶析装置の概要をFig.1に示す。 装置はマスフローコントローラー (FCC-3000-G1, Kofloc Co.,Japan), pHメーター, 旋回・剪 断式ファインバブル発生器 (Tech Ind.製), 反応 容器および恒温槽から構成される²⁾。

Fig. 1 Semi-batch type crystallization apparatus

 d_{bbl} が40 μ mのCO₂/O₂/N₂ファインバブルはモー ターの回転(1500 min⁻¹)によってインペラー背 面に生じる負圧とインペラーの剪断力を利用 した旋回・剪断式発生器を用いて発生させた。 CO₂, O₂, N₂のモル流速は各々5.58, 5.58, 44.6 mmol/(L·min), CO₂/O₂/N₂のモル比は脱硫・脱硝 後の排ガス組成と同一の1:1:8である。比較とし て, d_{bbl} が200 - 2000 μ mのCO₂/O₂/N₂気泡を同一 のモル流速で分散式装置(散気板孔径:5 - 120 μ m)により発生させた。

Enhanced Production of Dolomite from Removed K Bittern by CO₂/O₂/N₂ Fine Bubble Injection

Tomohiro KUROSAKI, Yusei SHIRAISHI, Shinnosuke KAMEI, Shuichi SHIMOMURA, Iwahito TAKAHASHI, Koji Masaoka, Masakazu MATSUMOTO

2.3 CaMg(CO3)2の反応晶析

温度が298 K, pHが6.8の脱K苦汁400 mLに d_{bbl} の異なるCO₂/O₂/N₂気泡を連続供給し, CaMg(CO₃)₂を反応晶析させた。反応時間(t_i)は 90 min以内とし、晶析中のpHは8.0 mol/Lの NaOH水溶液の滴下により一定に保った。固相 生成物はXRDにより同定し、Mg/Ca比はカルサ イト(2 θ =29.4°)からCaMg(CO₃)₂(2 θ =30.7°)へ のピークシフトより算出した³。

3. 結果および考察

3.1 平均気泡径を変化させた場合の CaMg(CO₃)₂の収量およびMg/Ca比の時間 変化

脱K苦汁に d_{bbl} が40 – 2000 μ mのCO₂/O₂/N₂気 泡を供給した場合に生成したCaMg(CO₃)₂の収 量($C_{dolomite}$)およびMg/Ca比の時間変化をFig. 2 に示す。 d_{bbl} の減少にともない核発生誘導期(結 晶核の生成が確認されるまでの待ち時間)が短 縮され, t_r の増加に応じた $C_{dolomite}$ およびMg/Ca 比の増大が顕著となることがわかる。 d_{bbl} が40 μ m, t_r が90 minでの $C_{dolomite}$ およびMg/Ca比はそ れぞれ0.32 mol/Lおよび0.86に達した。これは, 気泡の微細化にともなう気-液界面積・気泡滞 留時間の増大によるCO₂物質移動の促進,およ び負の表面電位による気-液界面での局所的な Ca²⁺・Mg²⁺濃度の増大に起因すると推察される。

Fig. 2 Time changes in C_{dolomite} and Mg/Ca ratio of CaMg(CO₃)₂ at different d_{bbl} values

3.2 平均気泡径とCaMg(CO₃)₂の生成速度およ びMg/Ca比の増加速度の関係

 $C_{dolomite}$ およびMg/Ca比の時間変化の傾きよ り算出したCaMg(CO₃)₂の生成速度 ($r_{dolomite}$)お よびMg/Ca比の増加速度 ($r_{Mg/Ca}$)を d_{bbl} で整理し た結果をFig.3に示す。 $r_{dolomite}$ および $r_{Mg/Ca}$ は d_{bbl} が200 µmまで徐々に増大し、 d_{bbl} が200 µm以下 では指数関数的に増大した。これは、気-液界 面積、滞留時間、表面電位の増大によって引き 起こされる気泡の微細化効果が100 µm以下の d_{bbl} で顕著に現れることに起因する。結果とし て、 d_{bbl} を2000 µmから40 µmへと1/50に減少さ せると、 $r_{dolomite}$ および $r_{Mg/Ca}$ がそれぞれ9.2倍お よび2.3倍となった。

Fig. 3 Effects of d_{bbl} on $r_{dolomite}$ and $r_{Mg/Ca}$

謝辞

本研究は、令和6年度大学院生産工学研究科 横断型プログラム(ユニットテーマ:ファイン バブルを用いたグリーンイノベーションプロ セスの構築)の支援を受けて実施されました。 ここに記して感謝の意を表します。

参考文献

- 1) M. Matsumoto *et al.*, *J. Crsyt. growth*, 469(2017) pp.36 41
- M. Matsumoto *et al.*, J. Chem. Eng. Res. Des., 88 (2010) pp.1624 - 1630
- 3) H. Mitsusio, *et al.*, *Res. Rep. Kochi Univ. Nat. sci.*, 32(1983) pp. 327 - 334