回転水槽を用いた準二次元乱流の非線形ダイナミクスの

模擬実験

日大生産工(学部) 〇白井 ヒカル 日大生産工 野邑 寿仁亜 日大生産工 柴山 均 日大生産工 佐々木 真

1. 背景・目的

準二次元乱流は日常に普遍的に存在してお り、気象や海洋、惑星、磁場閉じ込めプラズマ など様々なところで引き起こされている。回転 流体系や磁場閉じ込めプラズマでは、コリオリ カやローレンツ力の存在により、準二次元的乱 流が発達し、非線形現象によって構造形成が引 き起こされる。木星の縞模様や地球のジェット 気流や偏西風、磁場閉じ込め核融合プラズマに おけるゾーナルフローは同種の流れであり、ゾ ーナルフローは惑星大気や核融合プラズマの ダイナミクスを支配する重要な流れである。こ こで、回転流体系や磁場閉じ込めプラズマにお けるナビエストークス方程式は、数理的に同じ 形であるため、生じる乱流は同じ性質を持つ。

上述のゾーナルフロー・乱流系の大域的観測 は、困難を極める。例えば、核融合プラズマは 中心温度が数億度と非常に高温であるため、内 部の大域測定は非常に難しい。また、地球や木 星では、衛星をいくつも打ち上げたりしなけれ ばならず、直接観測するには多くのコストがか かる。ゾーナルフローと乱流の大域的相互作用 の理解に向けた観測が必要不可欠となってい る。

そこで本研究では、回転水槽を用いて、惑星 などの回転流体系や磁場閉じ込め核融合プラ ズマにおける準二次元的乱流の模擬を行うこ とを目指す。ゾーナルフローや乱流の大域観測 を行い、非線形過程の詳細を明らかにすること を目指す。

実験装置の開発

使用する回転水槽とレーザー装置の鳥瞰図 と横から見た水槽の断面図をFig.1に示す。

波が立つと正確な測定が行えないので、水槽 が回転台の回転軸に対して芯が出るようなア クリル板を作成し、中心に固定している。回転 台の大きさは \$ 700 mm で水槽は \$ 500 mmの ものを使用する。水槽上部から撮影するための カメラ固定器具をアルミフレームで作成して おり、縦横自在に動かしてカメラが固定できる ため任意の場所の水流を観測できる。

水槽内には円錐台を設置している。円錐台に よって傾斜を作ることにより、流体の厚みを変 えて空間の不均一性を作っている。この流体厚 みの空間不均一性が実効的にコリオリカの空 間不均一性を生み出し、惑星大気におけるロス ビー波や核融合プラズマにおけるドリフト波 に対応する乱流を生み出す駆動源となる。ただ し、これらの流れは線形安定であるため、実際 の駆動には、外部摂動の印加が必要である。

レーザー装置は1枚のブレッドボードの上に、 レーザー装置、ミラー2枚、パウエルレンズを 固定している。ミラー2枚を用いることでレー ザー光の射出方向を制御しやすいものにして おり、パウエルレンズによってレーザー光のビ ーム形状を円から横長一直線に変換している。 レーザー装置は波長532 nmのものを使用して いる。水の流れを可視化するために、波長532 nmのレーザー光を吸収してオレンジ色に発 光するトレーサー粒子(UVPMS-BR-0.995 45-53 um)を水槽に多数投入している。粒子 の密度は水槽内の水の密度に非常に近いた め、水槽を回転させること以外に起因する粒 子の運動は無視することができる。撮影する 時には暗幕用いて日光や部屋のLEDの光を遮 断するようにする。実際にレーザー光を射出し、 トレーサー粒子が反応している様子を上部か ら撮影した画像をFig.2に示す。

Fig.1 実験装置の外観(a)と水槽の断面図(b)

Demonstration of nonlinear dynamics of quasi two-dimensional turbulence by using a rotating tank

Hikaru Shirai, Junia Nomura, Hitoshi Shibayama and Makoto Sasaki

Fig.2 レーザー光を照射した水槽内の様子

3. レーザーを使用した速度場推定

粒子画像流速測定法は流体中にトレーサー 粒子を投入し、レーザー光を照射することで発 光した粒子を撮影し、解析することで目に見え ない気流や水流を可視化することができる。こ の解析結果からは2次元平面のみならず3次 元の情報も取得でき、流体の方向と速度を解析 することが可能となる。2枚の画像間での粒子 移動量は相互相関関数によって求められる。

 $C_{fg}(\zeta) = \overline{f(x)g(x+\zeta)} \quad (1)$

f(x)とg(x+ ζ)はそれぞれ画像の1枚目、2枚目の 1次元関数を表している。この二つの関数の積 和の平均を取ることで相互相関関数 C_{fg} が求め られる。 ζ は粒子の移動量を表しており、これ を変化させて相互相関係数が最大となる値を 探す。(1)式ではf(x)とg(x+ ζ)が最もよく一致す る時に相互相関係数は最大となる。

4. 大域的流れ場の観測

水面の高さが100 mmになるように水を満 たし、水槽に対し横からレーザー光を照射する。 このときレーザー光は水面に当たるよう調節 する。トレーサー粒子を1 gほど投入し、回転 装置上部にカメラを設置する。回転台は反時計 まわりに回転し、カメラはこの回転速度と同じ になっている。回し始めは波が立つのでこの波 が消えるまで十分な時間回す。十分な時間回し たあとそのまま撮影を開始する。撮影時間は1 分ほどを目安に行う。

得られた動画を1フレームごとの画像に変換 し、任意の連続した2枚の画像で解析を行う。 画像処理ではノイズ評価を行なっており、この 結果から信号対雑音比を求め、閾値を設定する。 この閾値よりも低いベクトルは赤色、高いもの は青色のベクトルで表示している。計算したベ クトルを1枚目の画像にプロットすることに よって2枚目までどれだけ動いたか確認するこ とができる。ベクトルを表す粒子の移動量は画 像に対し任意のサイズの窓を生成し、この窓を 画像全体に走らせて2枚目との相互相関を計 算することで求められる。

23RPMで回転台を回した時の解析結果を Fig.3に示す。図は0-7フレーム間を表している。 Fig.3を見ると回転台の回転方向が反時計まわ りなのに対して、粒子は時計回りの方向に発展 しているのが確認できる。このように、回転水 槽内の大域的な流れ場の評価を行うことがで きた。

Fig.3 粒子移動のベクトル表示

5. まとめ

回転流体系や磁場閉じ込め核融合プラズマ などに見られる準二次元的乱流場の大域観測 を目指し、回転水槽を用いた詳細観測装置を開 発している。アルミフレームでカメラ固定器具 を作成し、コンスタントに実験が行える環境を 整えた。また、粒子画像流速測定法に基づく流 れ場推定を行った。今後は、乱流場の駆動を行 い、乱流ダイナミクスの観測を推進する。

- 6. 参考文献
- Boris, Galperin., & Read, Peter L. (2019). Zonal Jets: Phenomenology, Genesis, and Physics. Cambridge. Cambridge University Press.
- 高橋芳文,佐々木真,回転水槽を用いた乱流現象の観測実験の立ち上げ,日本大学生産工学部第56回学術講演会公演概要(2023)p.231-232.
- 補原潤,明治大学 相互相関法, <u>http://www.isc.meiji.ac.jp/~sakakib</u> <u>a/index.html</u>, 10/14/2024

— 736 —