広帯域光発生に向けた LiNbO₃ 導波路に関する研究

日大生産工(院) ○北村 大和 日大生産工 石澤 淳 早大 北 智洋 産総研 高 磊

1. まえがき

光周波数コム(光コム)をはじめとし,超高 速分光や光コヒーレントトモグラフィ(OCT) 技術など様々な分野に対して広帯域光が必要 とされている.光コムにおいては,多数の輝線 スペクトルコムの周波数が低ノイズかつ安定 していることが他のアプリケーションに応用 するにあたり重要である.そのためにはキャリ アエンベロープオフセット(CEO)信号のフィ ードバックが必要であり,自己参照法による CEO信号の検出に1オクターブ以上のスペク トル帯域を必要とする.近年の研究では,高非 線形性の性質を持つ導波路を用いて光コムの 広帯域化が行われている¹⁾.

そこで本研究では 2 次 ($\chi^{(2)}$) 及び3次 ($\chi^{(3)}$) の非線形効果を持ち,広帯域化が可能とされる ニオブ酸リチウム (LiNbO3:LN)を利用した 導波路を提案する.LNは,電気光学デバイス や非線形光学デバイス用の材料として普及し ており使用されている.Si,Si₃N₄,InPなどの 材料と比較して,LNは強い電気光学効果,大 きな屈折率,広い透明波長,安定した物理的・ 化学的特性などといった特徴がある.

提案手法

先行研究として, SiO₂をSiで挟んだ水平ス ロット導波路 (Si-SiO₂-Si 水平スロット導波路) と呼ばれる特殊な構造をした導波路が理論的 に提案された²⁾.後に,我々の研究グループの 薄膜転写技術によって導波路が作製され,1オ クターブ以上の広帯域光の発生が実証されて いる³⁾.

水平スロット導波路の特徴として、短波長の 時は下側のチャネル導波路に、波長が長くなる とスロット層と呼ばれる中間にある導波路に 光モードが閉じ込められ、チャネル導波路とス ロット導波路のハイブリッドモードを形成す ることにより、フラットな波長分散を得ること ができる.

しかし, 先行研究においてスロット層である SiO₂ は極めて小さな χ⁽³⁾効果しか持たない材 料であるため,高機能化および更なる広帯域化 は難しい.

そこで本研究では、スロット層を SiO₂から LN に置き換えた水平スロット導波路 (Si-LN-Si 水平スロット導波路) (W:750 nm, H₁: 350 nm, H₂: 120 nm, H₃: 80 nm) (Fig. 1) におい てゼロ分散波長 (ZDW) を調整し広帯域光発 生に向けた導波路構造のシミュレーションを 実施した.リブ型 LN 導波路 (W: 1300 nm, H: 800 nm) (Fig. 2) と比較を行う.

Fig. 1 Si-LN-Si 水平スロット導波路模式図

Fig. 2 リブ型 LN 導波路模式図

3. 実験方法および測定方法

本研究では有限差分固有モード(Finite-Difference Eigenmode: FDE)法を用いてシミ ュレーションを行った. FDE法は, 導波路の断 面上でマクスウェル方程式を解くことにより, モードの空間プロファイルと周波数依存性を 計算する方法である.

Study on LiNbO3 waveguide for broadband optical generation

Yamato KITAMURA, Atsushi ISHIZAWA, Tomohiro KITA and Rai KOU

FDE法を用いて各材料の厚さや幅のパラメ ーターを変化させ導波路のモード分布及び波 長分散のシミュレーションを行った.

4. 結果および検討

以下に得られたシミュレーション結果を 示す. Fig. 3は, Si-LN-Si水平スロット導波路 とリブ型LN導波路の波長分散特性である.

Fig. 4はSi-LN-Si水平スロット導波路における伝搬モードのy方向の電界分布である.

Fig. 3 Si-LN-Si 水平スロット導波路及び リブ型 LN 導波路の波長分散特性

Fig. 4 Si-LN-Si 水平スロット導波路 のモード分布 (左図より波長 1.4 µm, 2.0 µm, 2.5 µm)

Fig. 3より、およそ波長1.5µmから2.1µmに かけてフラットかつ異常分散領域に制御す ることができた.

また, Fig. 4より波長1.4 µmでは下層のSi チャネル導波路にほぼ全ての光電界が集中 しているのに対して,波長2.0 µm以遠では LNによるスロット層に光電界が閉じ込めら れていることが判る. 5. まとめ

本研究にて、LNをスロット層に用いた導波 路構造の最適化をシミュレーションにより行 うことができた.今後は薄膜転写プリント技術 (µ-Transfer Printing)を活用した導波路作製 に向けて,今回シミュレーションを行った導波 路をもとに更に構造の最適化を進めていく.

参考文献

- K. Yugo, et al., "Sub 30 fs fibre coupled electro - optic modulation comb at 1.5 μm with a 25 - GHz repetition rate." Electronics Letters, 59.11, (2023) e12830.
- Z. Lin, et al., "Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octavespanning supercontinuum generation." OpticsExpress 20(2), (2012) pp.1685-1690.
- S. Ryosuke, et al., "An Octave-Spanning Near-Infrared Frequency Comb Broadened by Si-SiO₂-Si Horizontal Slot Waveguide." Conference on Lasers and Electro-Optics (CLEO), (2024) SM1M.7.