日大生産工(院) 〇小澤 一隆 日大生産工 佐々木 真 核融合研 小林 達哉

## 1. 背景

磁場閉じ込めプラズマにおける粒子や熱の 輸送は乱流の非線形過程に支配される。乱流は 非線形的に帯状流やストリーマと言われる構 造を形成し、乱流の時空間分布が決定される [1]。乱流の時空間分布の理解には帯状流との 相互作用を理解することが重要である。近年の 乱流シミュレーションにおいて乱流の弾道伝 播や空間局在が観測されており帯状流による 乱流の捕捉効果が指摘されている[2,3]。乱流捕 捉や帯状流の非線形過程の実験的検証が求め られる。トロイダルプラズマにおける帯状流に は周波数が0の静的帯状流と振動ブランチであ る測地線音波(Geodesic Acoustic Mode : GAM) がある。本研究では、非線形波としての性質か らGAMの高調波の挙動及びGAMと乱流の時 空間的挙動を調べる。

2. 解析データ

解析対象はトカマク型核融合試験装置JFT-2MにおけるHeavy Ion Beam Probe(HIBP)によっ て計測された静電ポテンシャルを対象とする。 GAMが支配的な乱流状態に着目する。L-mode ではGAMが支配的で乱流を大きく変調してお り、その効果によってGAMの高調波生成は理 論的に予言されている[4]。Fig.1に静電ポテン シャルの周波数スペクトルを示す。Fig.1では 10~20kHzの間にpeakがある。これがGAMであ り、 $f_{GAM} \approx 15$ kHzである。また、GyroKinetic



Vlasov code(GKV)を用いたシミュレーション と比較し議論する。

#### 3. 解析手法

本研究の解析手法として条件付き平均法を 用いる[5,6,7]。この手法は準周期的なトリガー である心電図から脈拍を抽出する方法で開発 された。この手法をプラズマ乱流に応用するこ とで、統計的に確からしい非線形波(templates) を得ることができる。この手法は以下のように 行う。初期のtemplateとして $x_{i=0}(t')(-T/2 < t' < T/2)$ を定義する。ここでは単純な正弦波 とする。ここで、Tは任意の周期、iは反復の回 数を表す。解析データy(t)に対して $x_{i=0}(t')$ と の相互相関を周期Tごとに計算する。 $x_{i=0}(t')$ と y(t)の相互相関は以下の式に従う。

$$C_j(t) = \int_{-\frac{T}{2}}^{\frac{t}{2}} \frac{1}{\sigma_y(t)\sigma_x} \left( y(t-t') - \bar{y}(t) \right)$$
$$\cdot \left( x_j(t') - \bar{x}_j \right) dt' \tag{1}$$

ここで、 $\sigma_y(t)$ , $\sigma_x$ はそれぞれy(t), $x_j(t')$ の標準偏 差を表す。計算した $C_j(t)$ から相関が高い時刻をト リガーとする。トリガーに対応する観測データを 周期 T で抽出する。この抽出した波形の平均を計 算することで、first templates が得られる。i番目の トリガーに対するj回目の反復である $t_{peak,j}(i)$ を 用いて、条件付き平均は以下の式によって計算さ れる。

$$x_{j+1}(t') = \sum_{i} \frac{y(t-t_{peak,j}(i))}{n}$$
 (2)

ここで、nはトリガーの総数を表す。得られた  $x_{j+1}(t')$ を用いて、jが収束するまで反復して行う。 収束した波形は統計的に確からしい非線形波形で ある。

4.1 非線形波の抽出

JFT-2MとGKVの時系列データに条件付き平 均法を適用し、得られたGAM周期における静 電ポテンシャルの非線形波をFig.2(a)に示す。

Extraction of Nonlinear Waveforms in Geodesic Acoustic Mode by Using Conditional Average

Kazutaka OZAWA, Makoto SASAKI and Tatsuya KOBAYASHI



得られた非線形波からフーリエ解析を用いて 高調波を求める。高調波は以下の式で導出され る。

$$|\phi_m| = \left|\frac{1}{T} \int_0^T \tilde{\phi} e^{im\omega_G t} dt\right| \tag{3}$$

ここで、Tは周期、mは高調波の次数、*ϕ*は正規 化した非線形波を表す。JFT-2MとGKVの非線形 波から得られる高調波をFig.2(b)で示す。GKVで は高次になるにつれ高調波強度が減少していく 結果が見られた。一方、JFT-2Mでは3倍高調波は 4倍高調波よりも小さい結果が見られた。この 結果は計測領域全体で確認できた。この結果か ら、自己非線形性の強い高調波生成が示唆され る。シミュレーションでは、プラズマ境界等 の効果が適切に入っていないため、GAMの 定在波の生成が適切でなく、GAMの非線形 過程が実験と異なることが示唆される。



Fig.2 (a)GAM周期における非線形波(b)高調波

## 4.2 GAMと乱流の時空間的挙動

次に、条件付き平均法を用いて乱流とGAM の流れの時空間構造を抽出する。まず、粒子輸 送が起こるトリガーを得るためにHαの観測デ ータにGAM周期で条件付き平均を用いる。Hα データは、観測装置の外から観測した発光度合 いを表しており、発光強度が高いほど粒子輸送 が起こっている。条件付き平均から得られたト リガーを基準に乱流とGAMの流れの時空間構 造を抽出する。抽出した乱流とGAMの流れの 時空間構造をFig.3に示す。Fig.3では、それぞ れ同期した構造が見られる。この位相関係は、 波動運動論が予測する乱流捕捉機構に矛盾し ない。



Fig.3 時空間構造(a)乱流(b)GAMの流れ

# 5. まとめ

本研究では、GAMの非線形波の性質を用い て高調波の挙動と乱流との時空間的挙動を示 した。統計的手法である条件付き平均法を用い て、非線形波の統計的抽出を行なった。解析デ ータとして、JFT-2MにおけるHIBP計測による 静電ポテンシャル揺動データを用いた。また、 GKVを用いたシミュレーションとの比較を行 なった。L-modeにおける静電ポテンシャルに 条件付き平均法を適用し、非線形波の抽出を行 なった。高調波の抽出では、GKVは高次になる につれ高調波強度は単調に減少していたが JFT-2Mでは $|\phi_4|/|\phi_3| > 1$ の傾向が計測領域全 体で見られた。このことからGAMの自己非線 形性が強く、波動運動論では説明できない高調 波生成が示唆され、非線形飽和機構の過程理解 に役立つ。Hαデータから得られたトリガーを 基準に乱流とGAMの流れの時空間構造を抽出 した。同期した構造を得られたことからGAM の流れによる乱流補足機構が示唆される。

#### 参考文献

[1]Diamond, Patrick H., et al. Plasma Physics and Controlled Fusion 47.5 (2005)

[2]Sasaki, Makoto, et al. Physics of Plasmas 25.1 (2018)

[3]Garbet, Xavier, et al. Physics of Plasmas 28.4 (2021)

[4]Sasaki, Makoto, et al., Nuclear Fusion 52.2 (2012)

[5]Kawachi, Yuichi, et al., Plasma and Fusion Research 14 (2019)

[6]Inagaki, Shigeru, et al., Plasma and Fusion Research 9 (2014)

[7]Kin, Fumiyoshi, et al., Plasma and Research 14 (2019)