現場重合型熱可塑性ウレタン樹脂マトリックスとする

FW 製 GFRTP 円筒のエネルギー吸収特性

日大	:生産工(院)	○山本 麻斗	日大生産工	坂田	憲泰	日大理工	大塚	賢哉
日大生産工	平山 紀夫	第一工業製薬	寒(株) 塩路 雄	É大	第一	工業製薬(株)	北川	貴士

1. 緒言

環境問題を解決するために、二酸化炭素排出 量の削減が求められており、特に自動車業界で は燃費性能を向上させるために金属材料と比 較して軽量で高強度な繊維強化プラスチック

(FRP)の適用が検討されている.FRPのマト リックス樹脂には熱硬化性樹脂を用いた繊維 強化熱硬化性プラスチック(FRTS)と熱可塑 性樹脂を用いた繊維強化熱可塑性プラスチッ ク(FRTP)があり,FRTPはリサイクル性に 優れ,再溶融が可能なため注目されている.な かでも,第一工業製薬㈱が開発した現場重合型 熱可塑性ウレタン樹脂は熱硬化性樹脂と同様 の成形システムで使用が可能なため自動車へ の適用が期待される.

本研究では、自動車の側面衝撃吸収部材であ るドアインパクトビームへの適用を目的に現 場重合型熱可塑性ウレタン樹脂を用いてフィ ラメントワインディング(FW)法で成形した GFRTP円筒の落錘衝撃試験を行い、エネルギ 一吸収特性の評価を行った結果について報告 する.

2. 使用材料

強化繊維にはEガラス繊維ロービング (RS110QL-362,日東紡績㈱)を用いた.マ トリックス樹脂には,第一工業製薬㈱が開発し た現場重合型熱可塑性ウレタン樹脂(H-6FPA17-KL:A剤,H-6FPB27:B剤)と,比 較用として熱硬化性エポキシ樹脂 (XNR/H/A6805,ナガセケムテックス㈱)を用 いた.以降,現場重合型熱可塑性ウレタン樹脂 をPU,熱硬化性エポキシ樹脂をEPと呼ぶ.

3. 成形方法

試験片の成形には図1のFW 装置を用いた. はじめに外径25mm, 全長1400mmの金属製マ ンドレルをFW 装置に取り付け, 離型処理を行 った. EP を用いた GFRTS と PU を用いた GFRTPのFW成形の様子を図2に示す.

GFRTS は主剤, 硬化剤, 促進剤を 100:100:2 の割合で混合した樹脂をレジンバスに入れ, 張 力を掛けながら含浸ローラーでガラス繊維ロ ービングに樹脂を含浸させてマンドレルへ巻 き付け, 85℃×4hの条件で硬化させた.

一方, PU はポットライフが 8 分で EP と同様の成形方法で成形することができないため, 定量送液ポンプ (MP-4000,東京理化器機㈱) を用いた. A剤と B剤の配合比が 100:210 に なるようにそれぞれ送液し,チューブ内で混合 させ,張力を掛けたガラス繊維ロービング上に 点滴した. その後,含浸ローラー部で繊維束内 に樹脂を含浸させ,マンドレルへ巻き付け, 120℃×3hの条件で硬化させた.硬化後はマン ドレルから脱型し,全長が 1000mm となるよう に両端を切断した.

各試験片の成形条件と肉厚を表1に示す. な お, PU と EP は同じ肉厚になるように成形を 行ったが, EP の方が肉厚は小さくなっている. 以降, 試験片名は「樹脂名_肉厚」で表し, 例 えば EP を使用し, 肉厚 3.6mm の試験片は 「EP_3.6」と呼ぶ.

図1 FW 装置

Energy Absorption Properties of FW-GFRTP Cylinders Using *In-Situ* Polymerization Thermoplastic Urethane Resin

Asato YAMAMOTO, Kazuhiro SAKATA,Kenya OHTSUKA, Norio HIRAYAMA,Yudai SHIOJI and Takashi KITAGAWA

a) GFRTS

b) GFRTP 図2 GFRTS 円筒と GFRTP 円筒の FW 成形 の様子

封驗世友	配向角	積層数	成形張力	肉厚
武阙 / 泊	[°]	[ply]	[N]	[mm]
EP_3.6	+ 20	6	15	3.6
EP_7.5	± 30	12	10	7.4
PU_4.3	+ 20	6	15	4.3
PU_9.8	<u> </u>	12	19	9.8

表1 成形条件と肉厚

4. 落錘衝撃試験

4.1 実験方法

落錘衝撃試験の様子を図3に示す. 落錘衝撃 試験の試験片は各3本とし, 質量100kgの落錘 子を高さ4.09mから自由落下させ, 速度32km/h で試験片の中央部に横荷重を負荷した. 支点間 距離は800mm¹⁾とし, 荷重は供試体の左右の治 具内に設置してあるロードセル(SH-100kN, 昭 和測器㈱)の信号をデータロガー(DL950, 横 河計測㈱)で計測し, それぞれを加算すること で求めた. 変位はハイスピードカメラ (FASTCAM Mini AX200, ㈱フォトロン)で撮 影した動画を画像解析することによって求め た. 衝撃特性は式(1)の単位質量当たりのエネル ギー吸収量 SEA で評価した²⁾.

$$SEA = \frac{EA}{Mass} \tag{1}$$

ここで, Mass は試験片質量, EA は荷重一変位 線図の面積を積分することで算出したエネル ギー吸収量である.積分範囲は自動車側面のク ラッシャブルゾーンを考慮して 150mm³⁾とし た.

図3 落錘衝撃試験

4.2 実験結果および考察

代表的な荷重-変位線図の比較を図4に示す. いずれの試験片も落錘子が衝突後,荷重は急激 に増加し最大荷重に達した.その後,荷重は減 少しながら変位150mmまで推移した.

比エネルギー吸収量の比較を図5に示す.図 中のエラーバーは最大値と最小値を示している.両試験片ともに肉厚の増加に伴って比エネ ルギー吸収量は増加した.

次に最大荷重,変位50mm以降の平均荷重と 曲げ剛性の関係を図6と図7に示す.最大荷重は 曲げ剛性と高い相関関係にあり,マトリックス 樹脂の影響は小さいと考えられる.一方,変位 50mm以降の平均荷重はPUの方が明らかに高 くなっている.これはPUの方が破壊じん性値 が高い⁴ことが影響していると考えられ,この ため比エネルギー吸収量はPUの方が大きくな ったと考えられる.

図7 変位50mm以降の平均荷重と曲げ剛性の 関係

5. 結言

本研究では、現場重合型熱可塑性ウレタン樹 脂を用いて FW 法で成形した GFRTP 円筒の 落錘衝撃試験を行い、エネルギー吸収特性を評 価した結果、GFRP 円筒の比エネルギー吸収量 はマトリックス樹脂の影響を受け、破壊じん性 値の高いPUを用いた方が比エネルギー吸収量 は大きくなることがわかった。

参考文献

- 1) 田邉 弘人, 宮坂 明博, 山崎 一正, 他, 新日鉄技報, 354, (1994) pp.48-53.
- 2) 史 棟勇,渡辺 憲一, R&D 神戸製鋼技報, 69,1, (2019) pp.65-70.
- 佐藤 始夫,内海 幸博,渡辺 憲一, R&D 神戸製鋼技報,57,2, (2007) pp.23-26.
- 平山紀夫,西田裕文,杉田勇史,鵜澤潔, 山田欣範,強化プラスチックス,66-11, (2020)pp.519.