日大生産工(院) 〇坪井 理恵子 日大生産工 藤本 利昭 日大・藝術学部 水野 僚子

1. はじめに

米海軍横須賀基地の前身である旧横須賀海 軍工廠の工場建築は、既往研究により、近代日 本の鉄骨構造技術が定着する過程を経てきた ことが明らかにされている.しかし、大正以降 の横須賀海軍工廠における鉄骨構造建築の変 遷について明らかにされていない.鉄骨構造建 築の導入過程において、これらの建築の調査は 技術史及び建築史上重要な意義を持つと考え られる.

本報告では、2018年に解体された「横須賀海 軍工廠造機部実験場」(以下、「実験場」と呼称)の構造部材の材料及び構造実験を行い、各 鋼材の材料特性の把握及び当時の鋼材につい て報告する.

2. 建物概要

建物概要1)-3)を表1,実験場を写真1に示す.

『横須賀海軍工廠外史』⁴の昭和 20 (1945) 年の図に「運転場」と記載されている本建物は, 海軍工廠造機部の施設が集まっている小海沿 岸に位置しており,解体が始まる 2018 年まで 実験場として使用されていた.

建物規模は,梁間約 36.8m,桁行約 86.0mの 長方形平面,建物高さ 20.8mの鉄骨構造及び鉄 骨鉄筋コンクリート構造平屋建てである.

士 1 7 本 4 年 1 年

衣 I 建物概要 1)~3)									
竣工	1923(大正12)年1月								
構造	鉄骨造(一部,鉄骨鉄筋コンクリート構造)								
規模	地上1階(一部,2階)								
延床面積	3153m ²								
建物高さ	20.8m								

写真1 実験場

3. 鋼材調査概要

3.1 調査試料

本研究では,解体時に回収した組立H形断面 柱とラチス梁,H形断面ラチス柱の各1体を試 験に使用した.

3.2 外観調査

供試材の外観を写真2に示す.各部材の外観 を記録した.

組立H形断面柱は.ウェブの平鋼を不等辺山 形鋼で両面から挟み丸鋲(径約21mm)で締結 した構造であった.また、ラチス梁とH形断面 ラチス柱は、上下各1本(柱の場合、各2本)の 平行な等辺山形鋼(弦材:L-65×65×6)と、そ の間を格子状に配した平鋼(腹材:PL-6)を丸 鋲で締結した構造であった.

(a) 組立 H 形断面柱

(b) ラチス梁

(c) H 形断面ラチス柱 写真 2 供試材の外観

The Characteristics of Trial Production Equipment Comparison of the Characteristic by the System

Rieko TSUBOI, Toshiaki FUJIMOTO and Ryoko MIZUNO

3.3 組立H形断面柱の引張実験

3.3.1 試験体

採取した引張試験片と試験記号の一覧を表2 に示す.

引張試験片は、組立H形断面柱の不等辺山形 鋼から各1本, 平鋼から3本を採取した. 試験片 の形状は、JISZ 2241「金属材料引張試験方法」 の5号試験片とした.

表2 採取した引張試験片と試験片記号の一覧

試験部位	鋼種	数量	試験片記号		
フランジ	アングル	4	CL-1, CL-2, CL-3, CL-4		
ウェブ	プレート	3	CP-1, CP-2, CP-3		

3.3.2 実験方法

引張実験は、JIS Z 2241「金属材料引張試験 方法|に基づき実験を実施した.試験片の軸方 向力に加力を行うことで荷重とひずみを計測 した.1軸ひずみゲージは、表面の錆を除去で きなかったため、試験体中央部側面に計2枚を 貼付した. 試験機には, 島津2000kN万能試験機 を用いた.

3.3.3 実験結果

ひずみ ε(%) (a) 不等辺山形鋼(フランジ)CL

引張実験結果の一覧を表3,応力一ひずみ関 係を図1に示す.

引張実験の結果より、アングル4本、プレー ト3本ともほぼ同じ応力一ひずみ曲線が得られ た. 降伏強度は235N/mm²超え, 引張強さは 400N/mm²超えた値であった.

3.4 ラチス材の引張実験

3.4.1 試験体

試験体概要図を図2に示す.

引張試験片は、組立梁の腹材から採取した. 試験片の形状は, 交差するように丸鋲で締結さ れた2枚の円孔のある板状試験片である.

図2 試験体概要図 (mm)

	鋼種	試験片 記号	平行部 厚	平行部 幅	上降伏点	下降伏点	0.2%オフ セット耐力	引張強さ	破断伸び
			(mm)	(mm)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(%)
	フランジ	CL-1	12.2	25.7	281	259	267	446	43
		CL-2	12.7	25.3	272	269	270	437	42
	アングル	CL-3	12.4	25.3	253	226	251	444	44
		CL-4	11.6	25.5	266	237	261	440	45
		CP-1	11.7	25.1	265	263	264	447	42
	ワエフ プレート	CP-2	11.7	25.1	Ι	_	268	445	46
		CP-3	11.7	25.1	264	255	262	447	46
45 40 35 30 (zumu/N) b 20 5		3 4	5 6	CL-1 - CL-2 CL-3 - CL-4 7 8	450 400 350 (元uuu/N) 250 500 斤分 150 100 510		2 3 4	5 6	- CP-1 CP-2 CP-3 7 8

表3 引張実験結果

図1 応力一ひずみ関係

ひずみ ε(%)

(b) 平鋼 (ウェブ) CP

6 7 8 9

3.4.2 実験方法

引張実験側面図を図3に示す.

引張実験は、円孔試験片を用いた引張実験とし、試験片の軸方向力に加力を行うことで、円 孔部の有効断面の応力と変位を計測した.試験体に生じる変形の測定は、図3に示すように配 置した2体の変位計を用いて計測した.また、 それぞれの縁から100mmの位置に白線を引き、 各鋼材の白線間の距離を標点間距離とした.

試験機には,島津2000kN万能試験機を用いた.載荷は単調引張載荷とし,破断するまで行った.

図3 引張実験側面図

3.4.3 実験結果

引張実験結果の一覧を表4, 応力一ひずみ関 係を図4,実験後の試験体を写真3に示す.なお, 応力は,荷重を円孔部の有効断面積で除して求 めた.変位には,試験片の塗装による試験機の 取り付け部のすべり変位が含まれている.また, 図4の"■"は,最大荷重時を示している.

写真3より, 試験片の破壊形式は, 2本ともへりあき破断であった.

表4より, 引張強さにおいて, No.1, No.2とも に400N/mm²超えた値を示した.また, 図4より, 降伏点は試験体2体ともわずかに認められ, No.1では約300N/mm², No.2では約330N/mm²を 示した.

表4 引張実験結果

写真3 実験後の試験体

3.5 H形断面ラチス柱の圧縮実験3.5.1 試験体

試験体は,上下各2本の平行な等辺山形鋼(弦 材:L-65×65×6)と,その間を格子状に配した 平鋼(腹材:PL-6)を丸鋲で締結したH形断面 ラチス柱である.実験にあたり,部材に均等に 圧縮力が作用するよう,試験体上下に鋼板を溶 接した.

3.5.2 実験方法

圧縮実験側面図を図5,圧縮実験平面図を図 6に示す.

試験体断面から一方向に圧縮力載荷を行う ことで,試験体全体の平均的な応力とひずみを 計測した.試験体を生じる変形の測定は,試験 体の圧縮変形を対称に配置した6体の変位計及 び12枚の1軸ひずみゲージを用いて計測した. なお,試験体の内法高さを標点間距離として, 2つの変位計で計測した平均値を試験体の変形 とし,それを標点間距離で除したものを試験体 のひずみとする.ひずみゲージは貼付配置の金 属面を電動サンダーとサンドペーパーで研磨 し,貼付した.

試験機は、島津5000kN構造物試験機を用い、 試験体上下の拘束条件は均一に載荷させるために固定とした.載荷は一方向単調載荷とし、 ひずみが5%に達するまで行った.

図6 圧縮実験平面図

3.5.3 実験結果

圧縮実験結果を表5, 応力一ひずみ関係を図 7, 実験後の試験体を写真4に示す. なお, 図7 の"■"は, 最大荷重時を示している.

写真4より,実験後の試験体は圧縮材のリベ ット接合間で局部座屈を示した.

図7より、変位計による測定値とひずみゲージによる測定値では、試験体が座屈荷重に達するまでほぼ同じ応力—ひずみ曲線が得られた. これより、組立圧縮材において、圧縮材である等辺山形鋼4本が一体として作用することがわかった.また、降伏強度は約300N/mm²を示した.

写真4 実験後の試験体

4. 考察

4.1 組立H形断面柱の引張実験

当時の規格である日本標準規格第20号G9 「構造(橋梁,建築其ノ他)用圧延鋼材」(大 正14年決定)⁵では,引張強さ39~47kgf/mm² (382.2~460.6N/mm²)と規定されており,アン グルの引張強さ437~446N/mm²,プレートの引 張強さ445~447N/mm²という実験結果は,当時 の規格を満たした鋼材であったといえる.また, アングルは異なる4体から各1本の引張試験片 を採取しているが,応力一ひずみ曲線では4本 ともほぼ同じ応力一ひずみ曲線が得られた.こ のことから,不等辺山形鋼では類似した鋼材と 考えられる.

4.2 ラチス材の引張実験

円孔試験片の強度の問題として,無穴試験片 と比べて有効断面積が小さいこと,応力分布が 異なり局部的な応力集中が生じることが挙げ られる.しかし,円孔試験片の引張強度は,部 分的に降伏点に達すると応力の平均化が起こ り,結局,最小断面積(有効断面積)で求めた 降伏強度に等しくなる⁹.

実験結果より,No.1の引張強さ404N/mm²という結果は、当時の規格を満たした鋼材であったといえる.一方,No.2の引張強さ481 N/mm²という結果は当時の規格外の値だが、円孔が開いた分有効断面積が小さいためだと考える.

ラチス梁とH形断面ラチス柱に用いられて いた等辺山形鋼と平鋼は同等の大きさである と考えられるが,同種の鋼材が使われていたか 判断するためには,化学成分分析や金属組織観 察をする必要がある.

5. まとめ

1923 (大正12) 年に竣工した横須賀海軍工廠 造機部実験場について,解体時に回収した構造 部材に使用されていた鋼材の調査を行った.

組立H形断面柱とラチス梁の鋼材は、当時の 規格を満たした鋼材であると考えられる.また、 ラチス柱において、組立圧縮材は圧縮力に対し て圧縮材である等辺山形鋼4本が一体として作 用することがわかった.

参考文献

 横須賀市立中央図書館郷土資料室所蔵:国有財産台帳 2)「新 営」JACAR (アジア歴史資料センター) Ref.C08021661800 (第 2~8 画像目),大正9年 公文備考 巻 86 土木12 (防衛省防衛研究所)
「施設建物調査表 一般命令第1号第2条(へ)に対するもの (1)」JACAR (アジア歴史資料センター) Ref.C08010939900 (第 43 画像目),横須賀海軍工廠引渡目録 1/2 (防衛省防衛研究所)
4)横須賀海軍工廠会:横須賀海軍工廠外史,1990.7.27, p.373 5) 商工省臨時産業合理局,工業品企画統一調查會:日本標準規格(縮 版)合本第1巻,工業調査協會(1937), p.159 6)島田静雄:鋼 構造設計アーカイブ,リベット構造,2001