1. はじめに

「日本の気候変動2020¹」によると、1時間降 水量80ミリ以上、3時間降水量150ミリ以上、日 降水量300ミリ以上といった強度の強い雨に ついては、1980年頃と比較して、おおむね2倍 程度に頻度が増加しており、これに伴い、近年 では土砂崩れ等の自然災害のリスクも上昇し ている。「令和元年房総半島台風(台風15号)」 は2019年9月9日に関東に上陸し、千葉県内10 箇所において観測史上1位の最大瞬間風速を更 新する記録的な暴風をもたらすとともに、豪雨 により土砂災害も発生した。

本研究では、2019年当時、大規模な土砂災害 が発生した千葉県南部を研究対象地域に設定 し、土砂災害が発生した場所について、土砂災 害の発生前よりリスクが高まっていたのかを 衛星画像によってどこまで判読できるか分析 することを最終目標とし、必要な空間情報は何 か考察することを目的とした。

研究手法

平成30年(2018年)に「災害時の人工衛星活 用ガイドブック土砂災害版2)」が公開され、衛 星搭載型の合成開口レーダ (SAR) によって土 砂災害を抽出する手法として、二時期のSARデ ータを使ったRGBカラー合成画像による手法 が紹介されている. 衛星SARは、人工衛星から マイクロ波を斜め下方に照射し、その反射波の 後方散乱強度と位相を受信しすることで地表 面の状態を画像化できる.また、マイクロ波を 照射することで、昼夜を問わず、被雲があって も地表面を観測できるため,災害時には広域に わたる面的な状況を把握できる有意性がある. 一方で、衛星SARの観測幅は限られていること や,軌道の周期によって観測される日付や場所 が限定的であるほか,人工衛星から斜め下方に マイクロ波を照射するために、レイオーバ(高 い建物や山が、衛星から近い距離にあると判断 され、倒れて見える現象)や、レーダシャドウ (高い建物や山に遮られ、その後ろ側の情報が 得ることのできない現象) が発生するため, 観

日大生産工(学音	ß) 〇中山	裕基
日大生産工	朝香	智仁
日大生産工	小林	奈央樹

測が制限される場所もあることに注意を要する.

本研究では,研究対象地として千葉県南部を 選定し,2019年の台風15号で大規模な土砂災 害が発生した2地点を選定した.また,衛星デ ータには,全球を観測している衛星SARの中で, ヨーロッパ宇宙機関(ESA)が無償で提供して いるSentinel-1Aを使用することとした. Sentinel-1Aは,2014年4月3日に打ち上げられ た,C-band SARである.表1は,本研究で使用 した2つの衛星データの観測日時を示したもの である.

表1 使用した衛星データ

観測日時	観測モード
2017/9/10 13:46	IWS
2019/9/12 13:43	IWS

いずれのデータも、ディセンディング軌道(北 →南の軌道)のIWSモード(観測幅250km)で 観測されたもので、レベル1のGRD (Ground Range Detected) フォーマットを使用した.2 つのデータのうち2017年に観測されたデータ は平常時の情報として、2019年に観測された データを台風による被災後のデータとして扱 うこととし、Sentinel-1のVV偏波およびVH偏 波のRGBカラー合成画像を可視化することで, 土砂災害が発生した地点の周辺における経年 変化を考察することとした. なお, VV偏波は 垂直偏波を送受信した際のライク偏波で、VH は送信が垂直偏波で受信が水平偏波であるク ロス偏波である.一般的に,森林等の表面散乱 よりも体積散乱が卓越する場所では、ライク偏 波の後方散乱は小さくなる一方,クロス偏波の 後方散乱は大きくなる傾向にあるため, RGB カラー合成画像のR (赤色) およびB (青色) チ ャンネルにVV偏波, G (緑色) チャンネルにVH 偏波を割り当てると,森林等の体積散乱が大き くなる場所では緑色の発色が強くなり,体積散 乱が小さくなる裸地や崩壊地は赤紫色に発色 することになる.

Remote Sensing Assessment for Sediment Disaster risks

Yuki NAKAYAMA, Tomohito ASAKA and Naoki KOBAYASHI

(a)Google Earthの可視画像 (2022年11月8日)

(b) 2017年9月10日観測の (c) 2019年9月12日観測の Sentinel-1 (R:VV, G:VH, B:VV) Sentinel-1 (R:VV, G:VH, B:VV) Fig.1 鴨川市金束付近の土砂災害発生箇所

(a)Google Earthの可視画像 (2019年9月10日)

(b) 2017年9月10日観測の Sentinel-1 (R:VV, G:VH, B:VV) Sentinel-1 (R:VV, G:VH, B:VV) Fig. 2 君津市香木原の土砂災害発生箇所

(c) 2019年9月12日観測の

結果と考察

本研究では、Sentinel-1のデータをダウンロ ードした後, ESAが無償で公開しているSNAP (Sentinels Application Toolbox) を使用し, 画像解析を行った. Sentinel-1のVV偏波およ びVH偏波の画像は、衛星の軌道情報の補正、 熱ノイズの除去後に後方散乱係数に変換し、ス ペックルノイズを除去した後にレンジドップ ラー変換によってオルソ補正した.この時,数 値標高モデル(DEM)として、基盤地図情報 数値標高モデルの10mメッシュデータを使っ た. Fig.1は, 鴨川市金束付近で発生した土砂災 害周辺の画像を示したものである. (a)は, Google Earthの可視画像(2022年11月8日)であり、中 央付近に土砂災害を確認することができる.(b) は2017年9月10日観測のSentinel-1のRGBカラ 一合成画像, (b)は2019年9月12日観測の Sentinel-1のRGBカラー合成画像であり、それぞ れRチャンネルにVV, GチャンネルにVH, Bチャ ンネルにVVを割り当てている. Fig. 2は, 君津市 香木原付近で発生した土砂災害周辺の画像を示 したものである. (a), (b)および(c)の画像につい ては, Fig. 1と同様のものである. Fig. 1では, 土砂災害が発生した斜面方位が南西であり,デ ィセンディング軌道のC-band SARでは、(b)お よび(c)を比較しても土砂災害の発生場所におい て色の変化が見られなかった.一方で, Fig.2 では, 土砂災害が発生した斜面方位が東向きで あり、(b)および(c)を比較すると土砂災害の発生

場所が,(c)は赤紫色に発色していることがわかっ た.しかしながら、土砂災害が発生していない場 所でも緑色や赤紫色の発色が散見される.既往研 究をあたってみても, 土砂災害のみを抽出する手 法については確立されていないが,斜面方位によ って後方散乱が異なる影響についてはSARを利 用する上では考慮しなければならない事項だと 思われる.

4. まとめ

本研究では,千葉県南部を研究対象地域に選 定し、Sentinel-1データを使って土砂災害の抽 出を試みた.結果として、土砂災害のリスク評 価を行うには、SARの強度画像だけでは難しい ことが分かった.今後は、DEMや光学センサな どの補助データを使用しながら,研究を進める 予定である.

謝辞:本研究は、令和5年度大学院生産工学研 究科横断型プログラム(複雑系とパターン形成) の支援を受けて実施しました。

参考文献

- 文部科学省 気象庁:日本の気候変動2020, 1) 2020
- 宇宙航空研究開発機構/国土交通省:災害時 2) の人工衛星活用ガイドブック土砂災害版,2 018.