流体解析における Adjoint 法を用いた形状最適化

日大生産工(院) 〇佐々木 翔梧 日大生産工 沖田 浩平

1. 緒言

地球温暖化の問題において二酸化炭素の排 出量削減や世界的な原油需給の逼迫による航 空機燃料の高騰により輸送機械の燃費向上が 求められており,抵抗低減に向けた空力形状の さらなる最適化が必要不可欠となっている.一 方,近年の計算機および CFD (数値流体力学) の発展により,より最適化された形状の検討で きるようになってきている.

形状最適化の手法の種類として,勾配法,進 化法,逆解法などがあり,勾配法を基にした形 状最適化の手法の一つとして Adjoint 法があ る.適用例として,航空機エンジン圧縮機の空 力最適化,遷音速翼の複合領域最適化,環境適 応型高性能小型航空機の主翼複合領域設計な どがある. Adjoint 法は航空機や自動車などの 最適化設計において重要な役割を担う技術で あり,空気力学的性能の向上を目的に,風洞実 験,CFD 解析などを組み合わせて,最適な形 状を決定することができる¹⁾.

本研究では、流体解析による形状最適化問題 として、飛行機の主翼を対象に揚力を最大にす る形状最適化に Adjoint 法を適用した.

2. Adjoint 法

航空機の機体の3次元形状設計のように1 回のCFD解析にかかる計算コストが大きい最 適設計問題では設計変数の個数(設計空間の大 きさ)が多く,感度解析の精度をあげようとす ると計算コストが大幅に増大する.最適化問題 において,設計変数に対する日的関数の変化率 を感度と呼び,勾配法では,この感度の大きい 変数を優先して変化させることで,最適化問題 の収束性を加速することができる.また,感度 解析手法にはいくつかの方法があり,従来の最 適化手法である直接差分法では,一度の形状変 更で少なくとも設計変数の数だけ目的変数を 評価する必要があるが,ラグランジュの未定乗 数法を応用した Adjoint 法では,設計変数の数 に依存せずに勾配を求めることができる². ここで、Adjoint 法の基本的な考え方につい て示す. ラグランジュの未定乗数法では、目的 関数J(x)を最大化または最小化することを目 的に制約関数g(x)に対して次式の制約条件を 満たす設計変数ベクトルxを求めることができ る.

$$g(x) = 0 \tag{1}$$

まず、ラグランジュ関数を次のように定義する.

$$L[x,\lambda] = J(x) + \lambda g(x)$$
(2)

ここで、 λ はラグランジュ乗数であり、Adjoint 法では Adjoint 変数と呼ばれる.次に、ラグラ ンジュ関数を設計変数ベクトルxについて微分 すると、その勾配が

$$\nabla L[x,\lambda] = \nabla J(x) + \lambda \nabla g(x) \tag{3}$$

と表される.右辺の $\nabla J(x)$ は目的関数Jの勾配であり, $\nabla g(x)$ は制約関数の勾配である.ここで,式(3)をゼロとおいた次式は Adjoint 方程式と呼ばれる.

$$\nabla L[x,\lambda] = 0 \tag{4}$$

この Adjoint 方程式を解くことで, Adjoint 変数 λ を求めることができる. 最後に, 目的関数 の勾配は次式により求められる.

$$\nabla J(x) = -\lambda \nabla g(x) \tag{5}$$

この勾配は、制約条件を満足する空間での目的 関数についての設計変数の勾配となるので、勾 配法の一つである最急降下法を用い、勾配をゼ ロに近づける方向に設計変数ベクトルxを変更 していくことで形状が少しずつ変化し、最適形 状を求めることができる.

3. Adjoint 法を用いた形状最適化

Adjoint 法を用いた形状最適化のプロセスを Fig.1 に示す.まず初期形状に対して CFD 解 析と Adjoint 解析を実施することによって,目 的関数を満たすためにはどの部分をどの程度 変形させればよいかが形状全体で明らかにな る.それをもとに形状変更を行い,再び CFD 解析と Adjoint 解析を実施し,その形状が最適

Shape Optimization using Adjoint Method in Computational Fluid Dynamics

Shogo SASAKI, Kohei OKITA

9-8

な形状なのかを判断する³⁾. この手順を繰り返 す事によって形状全体における形状変更は少 なくなり,式(5)の目的関数の勾配がゼロとる 極大点もしくは極小点では,形状変更をそれ以 上行っても目的関数の値が向上しなくなり,設 定した目的関数に対する最適形状が得られた ことになる.

4. 解析結果

OpenFOAM の adjointOptimisationFoam ソルバーを使用して NACA0012 の揚力係数の 最大化を行った. 解析条件は,迎え角 2 度, レ イノルズ数4 × 10^5 である.

Fig.2 に、最適化回数に伴う翼周りの圧力分 布の変化を示す.最適化前と最適化後の形状を 比較すると、最適化の回数が進むにつれ翼型後 方の形状が少しずつ歪んでおり、翼下面の圧力 が上昇していることがわかる.

Fig.3に揚力係数の最適化に伴う履歴を示す. 最適化前の揚力係数0.201に対して,最適化1回 目は0.207,最適化2回目は0.209,最適化3回目 は0.211と揚力係数が増加していることがわか る.最適化前と最適化3回目を比較すると,約 2.5%の揚力係数の増加が見られた.また,揚 力係数が増加した要因として考えられるのは, 形状最適化後の翼の下部の圧力が最適化前と 比べて大きくなっているため揚力係数が増加 したと考えられる.

5. 結言

流体解析による形状最適化問題として,飛行 機の主翼を対象に揚力を最大にするような形 状最適化にAdjoint法を用いた.その結果,揚力 係数の向上した翼形状を得ることができた.今 後の展望としてAdjoint法は従来手法よりも効 率的で高精度な計算を可能にし,大規模で複雑 な問題にも適用でき,計算時間も大幅に短縮で きるため,多くの設計変数を取り扱わなければ いけない複雑な形状の最適化などで従来の手 法に変わりメジャーな形状最適化手法になる と考える.

参考文献

- 1) 設計の最適化について(3) https://www.isas.jaxa.jp/docs/PLAINne ws/133_contents/133_1.html(2023/1/7)
- 1 雷 忠,牧野 好和,岩宮 敏幸: Adjoint 感度解析を用いた勾配法による 空力形状最適設計,宇宙航空研究開発機

Fig. 1 Adjoint 法による形状最適化のプロセス

Fig.2 NACA0012 の揚力係数の最適化に伴う 翼周りの圧力分布の変化結果

Fig.3 揚力係数と最適化回数のグラフ

構研究開発報告 (2008)

 3) 徳田茂史,久保田正人,坂本博信,野口泰: Adjoint 法による吸気ポートの形状最適 化,自動車技術会論文集、Vol.43、No.4、 p.943-948 (2012)