マイクロバブル造影超音波画像における非線形伝搬の影響

日大生産工(院) 〇丸山 義人 日大生産工 沖田 浩平

1. 緒言

マイクロバブル超音波造影剤を用いた診断 手法であるコントラストハーモニックイメー ジング (CHI) において画像のコントラスト分 解能の向上による高画質化のために造影剤挙 動の解明が求められている.本研究では,診断 装置から送信される超音波の伝搬過程におけ る非線形性がマイクロバブル超音波造影剤の 挙動と造影画像に与える影響について,非線形 性を考慮したシミュレーションを行った.

2. 解析モデル及び解析手法

超音波の送受信を行う解析モデルをFig.1に 示す.領域の上部のトランスデューサから集束 超音波を送信し,焦点位置で音圧データを取得 する.次に,焦点位置に仮想的に配置した気泡 に入射する圧力から,気泡半径の変化と気泡か ら放射される音圧を算出する.その後,気泡か らの放射音の伝搬をトランスデューサで受信 する.以上のシミュレーションによって受信信 号を処理し,信号強度を輝度表示したBモード 画像を構成した.

造影剤のモデルは肝腫瘍疾患や様々ながん の診断で有効なSonazoid^{®1)}を対象とした.超 音波造影剤の体積振動計算には造影剤のシェ ルの厚さ考慮して計算を行うことが可能であ るQinらによるモデル³⁾を採用した.Kellerら によって導出された大振幅の気泡運動を表す 運動方程式⁴⁾は周囲媒質の密度を ρ_L ,シェル 外側半径をR₂として,

$$\rho_L \left[\left(1 - \frac{\dot{R}_2}{c} \right) R_2 \ddot{R}_2 + \left(1 - \frac{1}{3} \frac{\dot{R}_2}{c} \right) \frac{3}{2} \dot{R}_2^2 \right]$$

$$= \left(1 + \frac{\dot{R}_2}{c} \right) [P_L(R_2, t) - p_I(t)] + \frac{R_2}{c} \frac{dp_g(t)}{dt}$$
(1)

と表され、cは周囲媒質の音速である.ここで、 右辺第1項の気泡のシェル表面の圧力PLと無 限圧力pIの差は、造影剤内部圧力pg、蒸気圧pv、 静圧po、無限遠の超音波圧力pi、表面張力σ、 気泡内の気体と周囲媒質の剛性率と粘度をそ れぞれG_s、GLおよびμs、μLとすると次式と なる.

Fig.1 集束超音波送受信解析モデル

$$\begin{split} P_L(R_2,t) &- p_l(t) \\ &= p_g + p_v - p_0 - p_i(t) - \frac{2\sigma_1}{R_1} - \frac{2\sigma_2}{R_2} \\ &- \rho_s \left[\frac{R_2(R_2 - R_1)}{R_1} \ddot{R}_2 - \frac{3R_1^4 - 4R_2R_1^3 + R_2^4}{2R_1^4} \dot{R}_2^2 \right] \\ &- \frac{4}{3} G_s \left[1 - \left(\frac{R_{20}}{R_2} \right)^3 \right] \frac{V_s}{R_2^3 - V_s} - 4\mu_s \frac{V_s}{R_2^3 - V_s} \frac{\dot{R}_2}{R_2} \\ &- \frac{4}{3} G_L \left[1 - \left(\frac{R_{20}}{R_2} \right)^3 \right] - 4\mu_L \frac{\dot{R}_2}{R_2} \end{split}$$
(2)

ここで、シェルの内側半径R1、平衡状態の外側 半径R20、Vsはシェルの体積である.右辺の1行 目は初期圧力と表面張力項、2行目はシェルの 慣性項であり3行目は粘弾性を考慮したシェル 内部の応力成分、4行目は粘弾性を考慮した周 囲媒質の応力成分である.

超音波伝搬シミュレーションには音響不均 一性や伝搬過程における音の減衰などを考慮 してシミュレーションを行う事が可能である k-Wave²⁾を用いた.k-WaveはMATLABおよ びC++で利用可能なオープンソースの音響ツ ールボックスである.

受信信号の処理

Bモード画像を構成するために、トランスデ ューサで受信した信号にFig.2に示す工程で処 理を行った.まず、トランスデューサの各素子 で受信した信号に受信遅延を与え、加算する. 次に、超音波の伝搬時に伴う吸収や散乱による

Effects of nonlinear propagation on microbubble contrast-enhanced ultrasound images

Yoshito MARUYAMA and Kohei OKITA

深部のエコー強度の減衰を補うために式(3)に 示す補正を与える.

$$p = p_0 e^{-\alpha f d} \tag{3}$$

ここで,αは減衰係数,fは送信周波数,dは往 復の伝搬距離を示す.その後,基本周波数と2 次高調波のガウスフィルタを適用し,ヒルベル ト変換後,ログ圧縮を行う.以上の信号処理を 各走査線で得たデータに適用し,輝度表示する ことでBモード画像を得る.

Fig.2 信号の処理工程

結果及び考察

Fig.1の解析モデルを用いて気泡位置を通る 中心ビームにおける線形伝搬,非線形伝搬での 送受信超音波シミュレーション及び気泡の振 動計算を行った.送信はリニアスキャン方式で, 超音波の駆動音圧は $P_t = 1.5 MPa$,中心周波数 $f_t = 3.75 MHz$ である.解析領域は $N_x = 40.3 mm$, $N_y = 20.4 mm$ であり,焦点までの距離は $L_f = 20 mm$ である.境界条件については完全吸収境 界 (PML)を領域の外側に配置した.伝搬媒質 の音速は $c_0 = 1549 m/s$,密度は $\rho_0 = 1070 kg/m^3$ であり,診断で使用される値である.肝臓の 音響特性から減衰係数 $\alpha = 0.399 dB/cm \cdot MHz^y$, y = 1.139,非線形パラメータ $B/A = 6.75 \ge 1$

気泡の振動計算によって得られた気泡の放 射音圧をFig.3に示す. Fig.3に示す気泡の放射 音圧の最大音圧は線形伝搬と非線形伝搬でそ れぞれ16.4MPa, 13.6MPaであった. トランス デューサで受信した信号に基本周波数と2次 高調波のガウスフィルタを適用し,信号処理を 行った輝度データをFig.4に示す. 基本周波数 フィルタでは線形伝搬, 非線形伝搬を比較する とおよそ同じ波形で2つのピークを受信した. しかし、第2高調波フィルタの結果では20.5m mから21.0mm辺りの振幅のピーク位置は線 形伝搬と非線形伝搬でそれぞれ20.7mm, 20.8mmであり, 非線形伝搬の方が約0.1mm深 い位置で受信し,振幅は非線形伝搬の方が高く なった.これは、2次高調波を用いて造影を行 うCHIにおいて, 超音波の非線形伝搬は線形伝 搬よりも深い位置に高い輝度で造影するとい う影響を与えると考えられる.

Fig.4 中心ビームにおける輝度データ

5. まとめ

線形伝搬,非線形伝搬で送受信する超音波シ ミュレーションと気泡の振動計算を行った.そ の結果,超音波の非線形伝搬がBモード画像に 与える影響を明らかにした.発表では構成した Bモード画像について報告する.

参考文献

-621 -

- 森安史典, 飯島尋子 新しい超音波造影剤 Sonazoid による肝腫瘍診断・造影の基礎, INNERVISION 別冊付録, (2007) pp.1-7.
- k-Wave, <u>http://www.k-wave.org/</u>,参照 (2023-10-5)
- Qin et al., "A model for the dynamics of ultrasound contrast agent in vivo", JASA 128, 1511, (2010)
- Keller et al., "Bubble oscillations of large amplitude", J.Acoust Soc. Am. 68, 628– 633 (1980)
- 5) Francis A Duck , "Physical Properties of Tissue: A Comprehensive Reference Book", IPEM, (1990) pp.98-110.
- Okita et al., "Microbubble behavior in an ultrasound field for high intensity ocused ultrasound therapy enhancement", JASA 134 1576, (2013)