日大生産工(院) 〇宮 靖淇日大生産工 永井 香織

1. はじめに

エレクトロニクスの発展とともに、レーザ による加工技術も大きな発展を遂げてきた。 特に近年ではファイバーレーザの実用化によ り、1000 W以上のレーザ照射が可能となった。 ファイバーレーザは、ビームプロファイルが ガウシアン型であり、レーザ照射後の対象物 ヘ与えたエネルギーなどを予測しやすい。ま た、ビーム形状はガウス光学を基本とするた め容易に変えることができる。さらに、光フ ァイバーを用いているため照射位置をフレキ シブルに変えることができる利点がある。

既往の研究により、レーザ光は、コヒーレ ンス性に優れており, 集光性が得られ, 高密 度熱源として微細加工が迅速に行え,熱影響 層や熱的変形の少ない精密な加工が行える¹⁾ と報告されている。日野らは軽金属を対象に 耐摩耗性や意匠性等の新たな機能付与を目的 に、レーザの特徴である急熱急冷が皮膜形成 に有利である¹⁾と報告している。一方、Feを 含有する金属材料に防食性能を付与する目的 として、黒錆を皮膜として金属材料の表面に 生成することが挙げられる。金属材料の黒錆 皮膜の形成は510℃以上の高温が必須²⁾であ り、変態温度を足した後に急冷することも必 要される³⁾。そこで、本研究は、レーザの特徴 である急熱急冷を制御することで黒錆皮膜を 生成できると考え、建設分野で使用されてい るss400鋼材の機能付与に着眼した。先行研究 では振幅特性がパルスであるのレーザを赤錆 に照射することで黒錆への改質ができる⁴⁾が、 細密性のある黒錆の形成が課題であると報告 されている。

本報告は課題を解決するため、レーザの振 幅特性を変え、より安定している連続波 (CW)を使用し、腐食させたss400鋼材に照 射し、表面の改質効果を検討した。

本実験は、腐食したss400鋼材へCWレーザ を照射後に表面状態を観測し、各種照射条件 と、表面現象との関係を把握することを目的 として行った結果について述べる。

2. 実験方法

2.1供試体

本実験で使用する供試体暴露前の水接触角 測定を写真 1、暴露前後の様子を写真 2 に示 す。供試体は 50×50×6mm の SS400 鉄板 16 枚とした。自然環境下で腐食された状態を模 擬するため、日本大学生産工学部津田沼校舎 5 号館屋上南面で 45 日間(2022年9月19日 ~2022年11月4日)屋外で 35°にて暴露を行 った。なお、暴露を行う前、水接触角の測定 を行った。

写真1 暴露前の水接触角測定

写真2 暴露前後の供試体

Research on surface modification of steel materials by laser Kyu Seiki Nagai Kaori

表1 照射条件

出力 (W)	モード	スポット径 (mm)	走査速度 (mm/s)	照射間隔	照射回数	<mark>焦点</mark> 距離 (mm)
100	QCW	1	5000 10000	0.03	1 5	100

図1 照射の模式図

2.2 レーザ照射方法

(1)レーザ発振器

本実験で使用したレーザ発振器は出力 100Wのファイバーレーザとした。本レーザ は材料の表面処理加工に適用されている。

(2)レーザ照射方法

レーザの照射条件を表 1 に、レーザ照射の 様子を図 2 に示す。本実験は、試験台の上に 供試体を水平に設置し、供試体 100mm の距 離からレーザを照射した。照射面積は供試体 全面とした。照射条件は、予備試験により、 表 1 に示すように走査速度、照射回数を 2 水 準とした。ただし、出力、スポット径、焦点 距離は各条件で同一とした。

2.4 評価方法

(1) 表面観察

表面観察は、目視観察およびマイクロスコ ープ(K社製 VHX-5000)による詳細観察とした。 評価項目は全体的な酸化物の面積、表面の 状態や金属光沢の有無とした。

写真3 各供試体の膜厚測定箇所

表2 金属の干渉色と可視波長 5)

Interference color	λm(Å)	d(Å)	
Pale yellow	4000 or less	340 or less	
Yellow	4400	370	
Brownish yellow	4900	410	
Reddish violet	5200	435	
Purple	5600	470	
Blue	6400	540	
Pale blue	7000 or more	590 or more	

(2) 膜厚測定

膜厚測定箇所を写真3に示す。供試体は 35°暴露を行ったため、a、bを上部、c、dを 下部とし、膜圧計(K社製 LZ-990)を使用し、 各供試体表面に対して設定したa、b、c、dの 4箇所の膜厚を測定した。評価項目は膜厚の 違いとした。

3. 実験結果

3.1 表面観察

酸化膜の干渉色と可視波長を表2に示す。照 射後の供試体を写真4、マイクロスコープで観 察した表面状況を写真5、6に示す。照射の結 果、すべての供試体表面に灰色の酸化膜が形 成され、光沢度が大きくなった。また、灰色

写真4 照射後の供試体

写真5 照射回数による溶融

の酸化膜の光沢度、面積は走査速度と照射回 数と強く関係を示していることが確認された。 先行研究ではこのような色が金属表面の酸化 膜の干渉色⁵である。これは、酸化膜の厚さ が増すに従って、波長が長波長になり、吸収 帯が可視波長域に入り、干渉色が現れる⁵こ とである。長谷川氏は真空装置の中に鉄を加 熱し、急冷することで酸化膜の干渉色を考察 した。その結果、鉄表面に黒錆(Fe₃O₄)が でき、真空装置に大量な酸素を投入すると粒 子の色は淡青色から次第に再び金属色に戻る が多少灰色を帯びているとわかった。本実験 では、真空環境で行っていないため、加熱と 伴い酸素の吸収も飽和状態になったと考えら れる。このことより、本実験で得られた酸化

写真6 照射速度による溶融

膜の色は灰色ぽくなったと考えられる。また、 レーザの熱による生成した酸化膜の特徴は先 行研究と同様であるため、酸化膜はFe₃O₄で あると考えられる。

また、健全な状態では、水接触角が平均 44.6°であり、照射後は平均56.4°となった ことが確認された。このことよりレーザ照射 は腐食した表面に撥水性を付与したと考えら れる。

(1) 走査速度5000

走査速度5000の場合表面の赤錆の色が消え、 表面にFe₃O₄が生成されたことが確認された、 溶融の発生も確認された。また、灰色の酸化 膜の生成は照射回数と関係があると示した。 照射回数増やすほど灰色の酸化膜の面積が増 やすことが確認された。

操作速度5000 mm/s

操作速度10000 mm/s

図1 走査速度の違いによる膜厚の変化

(2) 走査速度10000

走査速度10000の場合も5000と同じく表面 にFe₃O₄が生成されたことが確認された。照 射回数が増やすほど、表面の光沢度が上がり、 表層が溶融することが確認された。走査速度 5000のデータと合わせて考察すると、表面溶 融の原因はレーザエネルギーによる熱が表層 部の溶融温度に到達したと考えられる。 10000 mm/sの場合照射回数1回では溶融が発 生しない原因として、照射速度が早すぎて溶 融の所要温度に足してなかったと挙げられる。

3.2 膜厚測定

照射後の供試体表面の各箇所の膜厚測定を 図1に示す。膜厚を測定した結果。照射条件に よる上部と下部の膜厚のバラツキが大きかっ たことが確認された。

(1) 走査速度5000 mm/s

走査速度5000mm/sの場合照射回数が増や すほど酸化膜の厚みが増加傾向が見られた。 また、照射回数が増やすほど上下のバラツキ が小さくなる傾向が確認された。

(2) 走査速度10000 mm/s

走査速度10000 mm/sの場合、照射回数が増 やすほど供試体上下の膜厚のばらつきが大き いことが確認された。レーザの走査速度を遅 くすると1回照射に所要する時間が長くなる。 そのため、改質精度が高くなり、比較的安定 した酸化膜を形成したと考えられる。これが 5000 mm/sの方が上下のバラツキが少ない原 因だと考えられる。

また、一般的に工業で使用されている黒皮 処理されたss400製品は黒錆の膜厚1.5~2.5µm である。しかし、今回の照射条件で処理した ものはすべて2.5µmより大きいという結果を示 した。レーザの表面改質に当たり、条件の制 御やはまた今後検討する必要がある。

4.まとめ

- 1.レーザは赤錆の改質ができ、生成した酸化 膜の干渉色は灰色帯びる。
- 2.照射回数を増やすと表面に溶融が発生する。
- 3. 走査速度5000mm/sでは、照射回数が増や すほど供試体上下のバラツキが少ない。
- 4. 走査速度10000 mm/sでは、照射速度が速い ため、作業精度が走査速度5000mm/sよ り劣る。

参考文献

- 日野ら:レーザクリーニングとその応用, ものづくりを支える洗浄技術 (II),Vol.69,No.10,2018,pp435-440
- 田中ら:金属材料の辞典,朝倉書店発行,pp146デジタル大辞泉:エネルギー保存の法則
- 大沢ら:レーザ表面改質 による耐食性の 改善,Zairyo-to-Kanhyo,Vol.43,No.41994,p p216-225
- 宮ら:100wレーザを用いた場合の鉄鋼材 料の表面状況 その1,日本仕上学会、 2023
- 5. 長谷川正知:干渉色による鉄表面の酸化 膜厚さ決定法の吟味,日本金属学会 誌,Vol.25,No.12,pp773-776
- 石丸 智之ら:金属材料の高温曝露による 特性変化,電力技術研究所,材料技術 G,材 料 T,技術開発ニュース No.156/2017-2