耐酸性を有するヒューム管に関する基礎的研究

-高炉スラグ微粉末をライニング材に用いた場合のせっこうの影響-

日大生産工(院) 〇松山 巧 日大生産工 山口

1. はじめに

我が国では、老朽化した下水管路の管路更生が活 発に行われている. その一方で, 世界に目を向けると, 途上国における下水道人口普及率はまだ低く、イン ドネシアのジャカルタ地区別州を例にあげると, 2016年時点でまだ3%と整備が遅れているのが現状 である1). 上記途上国の都市部では、慢性的な交通渋 滞の発生が社会的課題であり、それらを考慮すれば、 推進工法による下水道整備が最適と考えられる. こ の推進工法には、管路材としてコンクリート製のヒ ューム管を用いる. 前述したインドネシアを含む東 南アジア諸国においては、国土が赤道付近に位置す ることから日本と比べて平均気温が約10℃高く、下 水管路の腐食の直接的要因である硫化水素がによる コンクリート製の下水管路の腐食・劣化が著しい. そ のため、下水道整備に合わせて耐酸性を有する管路 材(ヒューム管)による下水道整備が合理的である.

そこで我々は、ヒューム管内面にライニング材と して高炉スラグ微粉末(以下, BS)を用いることで, 経 済的で容易な製造を可能とした耐酸性を有するヒュ ーム管の開発に着手した. これまでの研究成果によ れば、その有効性と施工性の観点から一定の初期強 度が必要であることを明らかにしている³. が、BSに は一定量のせっこう(以下, CS)が含まれていること から、これの影響に関する検討を行っていなかった。 以上のことから、本研究はライニング材に汎用的 なBSと初期強度の確保を目的とした普通ポルトラン

ドセメント(以下, NPC)を用いた場合に対し, CSの添 加量を変化させた場合の硫酸浸漬試験を実施した.

2. 実験方法

2. 1 供試体作製

実験に用いた供試体は、40×40×160mmの角柱のモ ルタル硬化体である. 供試体の作製は、型枠底面に高 炉スラグ微粉末を用いた5mmのライニング層を打設 し, その上から35mmのモルタルを打設した. ライニ ング材の配合は表-1に示す通りで、BSにNPCを添加 した(1)BS:NPC=100%:0%, (2)BS:NPC=90%:10%, (3)BS: NPC=80%: 20%の3種類の配合に加え、それ ぞれにCSを0%, 5%, 10%, 20%添加(BS置換)した合 計12水準の配合で検討した.

使用したBSは"せっこう"が含まれていない一般的 な比表面積4000cm²/g, 密度2.91g/cm³のものを使用し た. 細骨材は, 鹿島珪砂(4号, 5号, 7号)と珪石紛を混 合したものを使用し、水粉体比(W/P)は施工性を考慮 してフロー値150mmを目標とする47%とした. べー スモルタルは表-2に示す通り、普通ポルトランドセメ ント(C:密度3.16g/cm³, 比表面積3340cm²/g), 標準砂を 用いたJIS R 5021に準拠したW/C50%のJISモルタル とした. 供試体は打設後に20°Cの環境室内で湿空養 生1日後脱型し、水中養生28日を実施した、その後、 14日間の20°C-65%乾燥を実施した後、ライニング材 面からの硫酸浸漬による影響を検討するため、ライ ニング面を除く側面(打設面を含めた5面)に2液混合 型のエポキシ樹脂によるコーティングを実施した.

2. 2 硫酸浸漬試験

硫酸溶液の濃度は、短期的な成果を得ることを目 的として日本下水道事業団の規格がに準拠し、10%と した. 浸漬期間は7, 14, 21, 28 日間とし, モルタル 1cm3 あたり 3.5ml の硫酸溶液を用いた. 所定の浸漬 日数を経過した角柱供試体の中央部を割裂し、割裂 面にフェノールフタレインを噴霧し、浸漬率を求め た.

表-1 ライニング材の配合

No.		W/P (%)	単位量(kg/m³)					
			水	セメント	高炉スラグ 微粉末	せっこう	珪砂	珪石 微粉末
			W	С	BS	CS	S	
1	BS100%,CS0%	47	300	-	638.3	0.0	1116.7	150.0
2	BS100%,CS5%	47	300	-	606.4	31.9	1108.9	148.9
3	BS100%,CS10%	47	300	-	574.5	63.8	1101.1	147.9
4	BS100%,CS20%	47	300	-	510.6	127.7	1085.6	145.8
5	BS90%,CS0%	47	300	63.8	574.5	-	1120.7	150.5
6	BS90%,CS5%	47	300	63.8	545.7	28.7	1113.7	149.6
7	BS90%,CS10%	47	300	63.8	517.0	57.4	1106.7	148.6
8	BS90%,CS20%	47	300	63.8	459.6	114.9	1092.7	146.7
9	BS80%,CS0%	47	300	127.7	510.6	-	1124.7	151.0
10	BS80%,CS5%	47	300	127.7	485.1	25.5	1118.5	150.2
11	BS80%,CS10%	47	300	127.7	459.6	51.1	1112.3	149.4
12	BS80%,CS20%	47	300	127.7	408.5	102.1	1099.9	147.7

表-2 モルタルの配合

W/C	重量(g)					
(%)	水	セメント	標準砂			
(,	W	C	S			
50	225	450	1,350			

Basic research on acid-resistant Hume tubes

— Effects of gypsum when pulverized blast furnaceslag powder is used as lining material—

浸漬率は図-1 に示す通り、撮影した画像から画像処理ソフトを用いて、色が異なっているピクセル数の割合を算出し、浸漬率の値とした.

3. 実験結果および考察

硫酸浸漬試験結果の一例と全水準の硫酸浸漬率をそれぞれ図-2ならびに表-3に示す。この結果によれば、どの水準においても、硫酸浸漬日数が21日までの浸漬率は1.0%~3.5%以内に留まっており、28日後に急激に浸漬率が高くなる結果となった。詳しく観察すると、21日の場合は、BS100%-CS20%(浸渍率1.5%)、BS90%-CS20%(浸渍率1.8%)の結果が良好であり、28日の場合は、BS100%-CS10%(浸渍率40.8%)、BS90%-CS5%(浸渍率42.5%)の結果が良好となった。一方でBS80%の水準も上記に対して大きな差はなかったと考察したが、BSのみに着目するとBS100%の場合がどのCSの添加率の場合においても浸渍率は50%以下となり最も良好な結果となった。

これらを踏まえ、表3に示す質量変化の結果によれば、画像解析による硫酸浸漬率と同様の傾向を示したものの、BS100%の場合はCSの添加率に関わらず質量変化が全体的に大きい結果となり、耐硫酸性の観点においては、前述した硫酸浸漬率の傾向とは異なる傾向を示し、BS90%の場合が良好な結果を示した。なお、CSの影響については、硫酸浸漬率ならびに質量変化の両結果とも、CSの添加によって耐硫酸性は良くなる傾向を示しており、その添加率は5%ならびに10%程度が良好である結果が得られた。

4. まとめ

本実験の検討で得られた知見を以下に示す。

- (1)硫酸浸漬試験で評価した場合, BS100%の場合は高い結果を示した. その一方で、質量変化の場合は、BS90%の結果が良好であった. この要因はまだ明らかにしていないが、析出されるせっこうの影響と推察した.
- (2)CSの添加はどの水準でも有効であった. その添加率は5%, 10%程度が良好である知見が得られた.

参考文献

- 1)JICA (独) 国際協力機構:事業事前評価表, 国際協力機構東南アジア・大洋州部 東南アジア第一課,https://www2.jica.go.jp/ja/evaluation/pdf/2019_IP-579 1 s.pdf
- 2)公益社団法人日本材料科学会:下水道 コンクリート構造物の腐食について,材料,47巻,10 号,pp.1031-10401998
- 3) 菅澤かおり他: 高炉スラグ微粉末とセメントを 用いたライニング材による耐酸性を有するヒュ ーム管に関する基礎的実験,令和5年度土木学会 全国大会第78回年次学術講演会、V-213.
- 4)地方共同法人日本下水道事業団:下水道コンクリート構造物の腐食抑制技術及び防食技術 マニュアル,pp.65-69,2017.

図-1 硫酸浸漬試験後の供試体

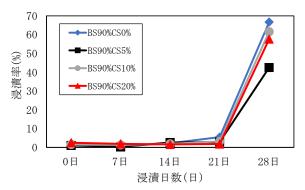


図-2 BS90%の浸漬率

表-3 硫酸浸渍率

浸漬率(%)							
NO.		浸漬日数(日)					
	NO.		7日	14日	21日	28日	
1	BS100%CS0%	2.9	2.2	2.9	2.8	47.5	
2	BS100%CS5%	1.8	2.4	3.1	2.6	43.5	
3	BS100%CS10%	1.7	2.7	2.9	2.8	40.8	
4	BS100%CS20%	2.9	2.4	3.4	1.5	44.3	
5	BS90%CS0%	2.1	0.5	2.2	5.5	66.7	
6	BS90%CS5%	1.1	0.3	2.6	2.9	42.5	
7	BS90%CS10%	1.5	1.3	1.9	3.2	61.5	
8	BS90%CS20%	2.5	1.9	1.6	1.8	57.6	
9	BS80%CS0%	1.4	1.3	1.9	5.8	64.7	
10	BS80%CS5%	1.8	0.9	3	3.4	42.6	
11	BS80%CS10%	2.7	1.5	2.1	2.6	61.8	
12	BS80%CS20%	1.7	1.0	1.8	4.5	62.3	

表-4 質量変化

質量変化(g)							
NO.		浸漬日数(日)					
		0日	7日	14日	21日	28日	
1	BS100%CS0%	0.0	8.8	9.2	29.8	80.6	
2	BS100%CS5%	0.0	8.1	11.8	27.7	74.9	
3	BS100%CS10%	0.0	9.4	12.5	23.1	61.6	
4	BS100%CS20%	0.0	11.5	10.3	23.3	80.2	
5	BS90%CS0%	0.0	6.5	13.6	23.5	66.7	
6	BS90%CS5%	0.0	5.3	10.8	24.0	59.5	
7	BS90%CS10%	0.0	6.0	10.8	21.9	72.6	
8	BS90%CS20%	0.0	5.7	11.2	19.6	73.7	
9	BS80%CS0%	0.0	8.1	12.9	26.7	71.5	
10	BS80%CS5%	0.0	8.5	13.5	27.5	61.1	
11	BS80%CS10%	0.0	9.0	15.1	29.2	70.6	
12	BS80%CS20%	0.0	7.6	13.6	25.9	76.3	