現場重合型ウレタン樹脂をマトリックスとする GFRTP の機械的特性の評価

日大生産工(院)	○遠藤 優太	日大生産工	染宮 聖人	日大生産工	平山 紀夫
三菱製鋼(株)	吉野 友梨	川尻 剛大	佐山 博信	佐野 正典	

1. 緒言

熱可塑性樹脂は弾性と粘性の両方の特性を 有する粘弾性材料であり,金属材料と比較して 優れた振動減衰性を有している.そのため,熱 可塑性樹脂をマトリックスとするガラス繊維 強化熱可塑性樹脂(以下,GFRTP)は高い比強 度を有する制振構造材料として注目されてい る.

先行研究では、自動車の電動化に伴う自動車 部品の軽量化として、熱可塑性樹脂の振動減衰 性を活かしたGFRTP製板ばねの研究開発を行 うために、板厚が厚い(以下、厚板)GFRTP試 験片を作製し、その機械的特性を評価した.そ の結果、厚板GFRTPの曲げ強度は板厚が薄い GFRTPの曲げ強度よりも大幅に低いことが明 らかとなった.

そこで本研究では、GFRTPの板厚が曲げ強度 に及ぼす影響について調査するために、板厚の 異なるGFRTPを作製し、静的3点曲げ試験から 各GFRTPの曲げ強度を評価した.さらに、有限 要素法解析(以下、FEM解析)を用いた曲げ解 析を実施し、GFRTPの板厚が曲げ強度に及ぼす 影響と破壊様相について明らかにした.

2. GFRTPの成形方法

2.1 GFRTPの構成材料

GFRTPのマトリックス樹脂は現場重合型ウ レタン樹脂(第一工業製薬株式会社,H-6FP17-KL),強化繊維はガラス繊維ロービング(日東 紡績株式会社,RS110QL-483AS)を使用した.

2.2 一方向GFRTPの成形方法

一方向に繊維を引き揃えた GFRTP の成形方 法を図1に示す.図1に示すように,現場重合 型ウレタン樹脂は主剤と硬化剤の2液を定量 送液ポンプで送液し,スタティックミキサーで 撹拌混合させ,ガラス繊維に滴下させた.そし て,現場重合型ウレタン樹脂をガラス繊維に含 浸させ,三角形のマンドレルに所定量のガラス 繊維を巻き付け,ガラス繊維が巻き付けられた マンドレルを硬化炉に入れて,120°C×1hrの硬 化条件で硬化させ,一方向 GFRTP を作製した.

図1 一方向 GFRTP の成形方法

2.3 加熱プレス成形

GFRTP試験片を作製するために、2.2節で作 製した一方向GFRTPを 210°C×30min で加熱 し、その後、二次賦形用金型で加熱プレスした. 成形温度は 210°C、成形条件は1MPa×10min + 4MPa×10min とした.また、GFRTP試験片の板 厚が曲げ強度に及ぼす影響について調査する ために、板厚を変化させて作製したGFRTP試験 片の寸法を表1に示す.

表1 GFRTP試験片の寸法

試験片名	厚さ	幅	長さ	
1	5mm	15mm	150mm	
2	8mm	15mm	240mm	
3	10mm	15mm	300mm	
4	15mm	30mm	300mm	

3. 試験方法及び解析方法

3.1 試験方法

GFRTP の機械的特性を評価するために,JIS K7017 に準拠し,静的3点曲げ試験を行った. 試験機は万能試験機を使用した.

Evaluation of Mechanical Properties of GFRTP with In-Situ Polymerization Urethane Resin Matrix

Yuta Endo, Masato Somemiya, Norio Hirayama, Yuri Yosino, Takehiro Kawajiri, Hironobu Sayama and Masanori Sano

3.2 FEM 解析

FEM 解析の解析モデルを図 2 に示す.こ の図に示すように,解析モデルは 1/4 対称モデ ルとし,対称条件を与えた.また,FEM 解析に は汎用有限要素法ソフト ANSYS2022R1 を使 用した.材料物性値は繊維体積含有率が 60%の 一方向 GFRTP の物性値とし,荷重値は静的 3 点曲げ試験で破断した際の荷重値を用いた.

4. 試験結果及び解析結果

4.1 試験結果

GFRTPの静的3点曲げ試験を実施し,得られ た結果を図3に示す.図3から分かるように,板 厚が増えるにつれ,曲げ強度は低下することが わかった.これは,板厚が15mmの一方向GFRTP では十分に圧力を負荷できなかったためと考 えられる.次に,各板厚におけるGFRTPの破壊 後の様子を図4に示す.図4から分かるように, 破壊様相は全ての試験片において,板厚方向の 応力成分による圧縮破壊であった.

4.2 解析結果

板厚が5mmと10mmのGFRTPの曲げ解析を 実施し、各成分の応力成分の計算を行った.解 析により求めた板厚方向の垂直応力成分を図5 に示す.この図からわかるように、3点曲げ治 具の圧子がGFRTPと接触している箇所で、板厚 方向に非常に高い垂直応力が生じていること が分かる.このことから、板厚の大きい一方向 GFRTPの曲げ試験では、一方向GFRTPの繊維軸 方向の破断応力に達する前に、板厚方向の垂直 応力成分が繊維直交方向の圧縮強度に達して 破壊に至ると推察される.

5. 結言

本研究では、GFRTPの板厚が曲げ強度に及ぼ す影響について調査するために、板厚の異なる GFRTPを作製し、静的3点曲げ試験から各 GFRTPの曲げ強度を評価した.さらに、FEM 解析を用いた曲げ解析を実施した結果、以下の 結論を得た.

- 1) **GFRTP**の曲げ強度は、板厚が増加するに つれて低下することが分かった.
- 板厚の大きい一方向GFRTPの曲げ試験では、板厚方向の垂直応力成分が繊維直交方

向の圧縮強度に達して破壊に至る可能性 があることが確認できた.

図2 静的3点曲げ試験の解析モデル(1/4モデル)

図4 GFRTPの破壊様相

図3 厚板GFRTPの曲げ強度と曲げ弾性率