○高橋 勇人¹ Giovanna Latronico² Paolo Mele² 飯田 和昌¹

1. 諸言

昨今のエネルギー価格の上昇,カーボンニュ ートラルの高い目標設定により, 革新的なエネ ルギーハーベスティング技術の開発が望まれ ている. その中でも、我々の身の回りに溢れて おり,捨てられてしまう熱を電気に変換する熱 電材料が大きな注目を集めている.熱電材料は, 今から約200年前に発見されたゼーベック効果 で,材料に温度差が生じると,材料中の電荷キ ャリア (電子やホール)が高温側から低温側に 拡散し,温度差に比例した電圧が発生する.熱 を電気に変換する変換効率は、性能指数 $ZT(=S^2\sigma T/\kappa)$ に比例する. ここでSはゼーベッ ク係数, σは電気伝導率, κは熱伝導率, Tは温 度である。Bi-Te系¹⁾やPb-Te-Se系²はZTの大き な材料として知られているが,希少元素である Teや毒性の高いPbを主成分にもつ. そのため, これら元素を含まない高性能な熱電材料の開 発が期待されている. そのような中, MFe₂O₄(M=Mo, Mn)に代表されるスピネルフェ ライトは,理論的に600~700 μV/Kと非常に大 きなゼーベック係数を示すことが報告された3). また希少元素を含まないことに加え,有害な物 質も含まないことから,新たな酸化物熱電材料 として大きな注目を浴びている. そこで, 本研 究ではIoT (Internet of Things)の自立電源として 組み込まれることを想定し、MnFe2O4薄膜の作 製に取り組んだ.

2. 熱電の動作原理

Fig. 1に熱電変換モジュールの模式図を示 す. モジュールの基本構成は, 伝導キャリアが ホール(p型)と電子(n型)の半導体素子からなる. これら材料に温度差が加わると, 固体内の伝導 キャリアが高温側から低温側に拡散し, 温度差 に比例した電圧が発生する. したがって, 低温 側から電池のように電力を取り出すことがで きる. このように小さなモジュールで熱から電 気を生み出すことができるので, 大きな注目を 集めている.

熱電変換効率を高めるためには、前述した ように性能指数 $ZT=S^2\sigma T/\kappa$ を高める必要があ る.単純に考えれば、金属のように大きな電気

日大生產工1,芝浦工大2

Fig. 1 The schematic illustration of a thermoelectric module.

伝導率 σ を有し、絶縁体のようにゼーベック係数Sが大きく、さらに σ は大きいが、熱伝導率 κ が小さい材料が望ましい.このように相容れない物性を有する材料を開発する必要がある.

3. 実験方法

3.1 MnFe₂O₄薄膜の作製手法

MnFe₂O₄薄膜はパルスレーザー堆積(PLD)法 により行なった. PLD用ターゲットとして,ス パークプラズマ焼結(SPS)法により作製された 高密度なMnFe₂O₄多結晶体を用いた. 基板には, MgAl₂O₄(001),石英(SiO₂)基板を用いた. これ ら基板を5 mm×5 mmの大きさにクリスタルカ ッターで劈開した. 劈開後,基板の洗浄は以下 の手順で行なった. まず,アセトンに浸し,5 分間超音波洗浄した後,イソプロパノールに浸 し,ブロワーで乾燥させた.その後,基板ホル ダーに銀ペーストで接着した.成膜は pN_2 =1 Pa, pO_2 =1 Pa の雰囲気下で,成膜温度を 550°C~800°Cまで50°C刻みに変化させて行なっ た.

3.2 X線回折(XRD)による結晶性の評価

薄膜の異相及び格子定数を調べるため, 芝浦 工業大学と名古屋大学にあるX線回析装置を 用いた.X線源はCu-K α (波長1.542 Å)を用い, 測定範囲は10° $\leq 2\theta \leq 110^{\circ}$ とした.各面指数か ら算出された格子定数を $\frac{\cos^2\theta}{\sin\theta} + \frac{\cos^2\theta}{\theta}$ でプロッ トし,ゼロ外挿することで, 誤差の少ない格子 定数を求めた.

Fabrication of MnFe₂O₄ spinel ferrite thin films for thermoelectric applications

Hayato TAKAHASHI, Giovanna Latronico, Paolo MELE and Kazumasa IIDA

4. 結果および考察

Figure 2 に $pO_2=1$ Pa の酸素圧下で, MgAl₂O₄(001)基板上に作製した MnFe₂O₄ 薄膜 の X 線回折測定の結果を示す.図から,単相 かつ面直に配向した MnFe₂O₄ 薄膜が成長した ことがわかる.成膜温度が高温になるにつれて 004,008 ピークが高角側にシフトしているの が分かる.面直方向の格子定数を成膜温度に対 してプロットした結果を Fig.3 に示す.成膜温 度の上昇に伴い,格子定数は直線的に減少して いる.しかし,MnFe₂O₄バルク結晶の格子定数 *a*=8.51 Å に比べて,大きいことが分かる. MgAl₂O₄ 基板の格子定数は 8.08 Å であること から,薄膜には $\varepsilon = \frac{8.08-8.51}{8.08} \times 100 \approx -5.3\%$ の 歪みが印加される.すなわち,MnFe₂O₄薄膜に は約 5%ほどの圧縮歪みが印加され,ポアソン

は約5%ほどの圧縮歪みが印加され,ポアソン 効果により面直方向に格子が伸長したと結論 できる.

同様の条件で石英基板上に作製した MnFe₂O₄薄膜のX線回折測定の結果をFig.4に 示す.成膜温度が750℃までは、311など複数 の回折ピークが観測されたことから、多結晶薄 膜であることが分かる.一方,成膜温度が800℃ の場合,hhhピークのみが観測された.すなわ ち、下地の基板がアモルファスでも、成膜温度 をあげることで111配向することがわかった. 格子定数の成膜温度依存性(Fig.3)から、SiO₂基 板上に成膜した薄膜の格子定数はバルク試料 とほぼ同じ値であった.したがって、薄膜に歪 みは導入されていないと考えられる.

熱電材料の観点から考えると, 配向膜は,

Fig. 2 The X-ray $2\theta/\omega$ scans of MnFe₂O₄ thin films grown on MgAl₂O₄(001) substrates under $pO_2=1$ Pa at various temperatures.

Fig. 3 The out-of-plane and *a*-axis lattice parameters of $MnFe_2O_4$ thin films as a function of deposition temperature. The films were grown on MgAl₂O₄ and SiO₂ substrates under $pO_2=1$ Pa.

Fig. 4 The X-ray $2\theta/\omega$ scans of MnFe₂O₄ thin films grown on SiO₂ substrates under $pO_2=1$ Pa at various temperatures.

粒界における電子散乱が抑制され,電気伝導が 向上する.これはFig.2に示した単結晶基板上 に成長した薄膜も同様である.今後は,これら 薄膜の電気伝導率,熱伝導率,ホール効果測定 によるキャリア濃度など調べる予定である.

参考文献

- H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics, D.M. Rowe, (CRC Press LLC, Boca Raton, 1995) pp. 211-238.
- R. Amatya, R. J. Ram, J. Electron. Mater. 41, 1011 (2012).
- M. Hussein, N. Assadi, J. Julio Gutierrez Moreno, M. Fronzi, *ACS Appl. Energy Mater.* 3, 5666 (2020).