日大生産工(院) 〇劉 嘉辰 日大生産工 沖田 浩平

1. まえがき

油圧機器において,作動油の圧力が飽和水蒸 気圧以下に低下することで気泡が発生するキ ャビテーション現象がある.この気泡が高圧域 の材料壁面近傍で崩壊し,材の損傷を引き起こ す.これにより,機器の性能が低下,騒音や発 生が問題になっている¹⁾.

油圧ポンプの吸い込み配管内に流れる油に 気泡が混入すると、ポンプ内にキャビテーショ ンが発生しやすくなるめ、ポンプ吸い込み配管 内の気泡の状態を把握する必要がある.しかし、 一般的に動作中の油圧機器内部を光学的に可 視化するのは困難である.そのため、本研究で は吸い込み配管内の気泡を含む油の流れを超 音波診断装置でとして取得し、物体検出アルゴ リズムの1つであるYOLOv3を適用することで 気泡の検出を行った.

2. 実験装置

油圧ポンプの吸い込み配管内に流れる油に 気泡が混入している状態を再現するために, Fig.1のような実験装置を使用した.気泡生成 部で発生した気泡は浮力によって管内を上昇 し,可視化部において光学的及び音響的に気泡 の可視化を行った.超音波画像画像の取得には 汎用超音波画像診断装置(GE ヘルスケア・ジ ャパン Vscan1.2)のリニアプローブを用いた.

3. 実験結果

実験装置の可視化部において,光学的に撮影 した画像をFig.2に示す.図より,直径2.0mm 程度の気泡が油中を上昇している様子が見ら れる.次に,超音波診断装置で取得した超音波 画像をFig.3に示す.油と空気の音響インピー ダンスが異なるため,油と空気の境界面で超音 波の反射が発生する.その結果,超音波画像上, 気泡は白く表示され,油は黒く表示される.

Fig.2 光学的に撮影した画像

Fig.3 超音波画像の一例(240p×320pixel)

4. YOLOv3による気泡検出

4.1 前処理

YOLOv3の学習データを作成のための前処 理として,超音波画像にアノテーションを行っ た結果をFig.4に示す.

Microsoftが開発したアニメーションツール のVoTT(Visual Object Tagging Tool)²⁾を用い て, 超音波画像で気泡と判断される白い部分を 囲むように領域を選択し,「bubble」ラベルを 付けた.

Fig.4 アノテーションをした超音波画像

Detection of Bubbles in Ultrasound Images of Bubbly Flow in Pipes.

Yoshitatu RYU and Kohei OKITA

4.2 YOLOv3

YOLOv3³は物体検出アルゴリズムの一つ であり、物体候補領域の検出とクラス分類を1 つのCNNで行う機械学習モデルである.これ により、物体領域の検出とクラス分類が高速化 し、動画でのリアルタイムで物体検出が可能と なっている.また、YOLOv3は今までのYOLO と異なり、ResNet⁴とFPN構造⁵⁵を用いること で検出精度が向上している.

本研究ではYOLOv3の利用に際して, Python開発環境としてGoogle Colaboratory を使用し, YOLOv3の機械学習モデルには DarkNet-53⁶⁾を,画像処理にはPytorch (version2.0.1)⁷⁾を用いた.

5. 学習結果

アノテーションした38枚の超音波画像のうち,訓練データに34枚,テストデータに4枚を使用した.訓練データの超音波画像をYOLOv3で10,000回学習したモデルを用いて気泡検出した結果の一例をFig.5に示す.図より,気泡と判断された領域が緑色の枠で囲われており,気泡が10個検出されていることがわかる.

ここで,YOLOv3による検出結果とアノテー ションとの差による損失関数の推移をFig.6に 示す.損失関数は,Bboxの中心座標,幅,高 さ,信頼度,物体クラス確率の二乗和誤差の和 であり,それぞれの項が0となるようにニュー ラルネットワークが学習させる.図より,学習 回数が1,000回まで損失関数の値が急激に低下 した後,2,300回までを超えたあたりからほぼ 変わらないことがわかった.

物体検出の精度評価によく使用される mAP⁹⁾を用いた.Fig.7にmAPを学習回数1,000 回ごとに評価した結果を示す.mAPの値が 2,000回まで上昇した後,ほぼ変わらず5,000 回で0.530の最高値となった.今回,使用した 画像は240×320pixelという画素数でアノテー ションした気泡の解像度が低く,小さな物体を 検出するのが難しいYOLOではうまく検出で きず,mAPの値が低い結果となったと考えら れる.

6. 結言

本研究では、油圧ポンプにある吸い込み配管 内の気泡を含む油の流れにおいて超音波診断 画像を取得し、物体検出アルゴリズムの一つで あるYOLOv3を用いて気泡の検出を行った.そ の結果、気泡を検出できたものの、検出精度を 表すmAPの値は最大で0.530とそれほど高く ない結果となった.今後は検出精度低下の原因

Fig.5 YOLOv3を適用した結果

について調べ,精度向上に向けて改善策につい て検討する.

参考文献

- 加藤洋治、キャビテーション、槇書店 (1990)
- https://github.com/microsoft/VoTT,(参照 2023-09-10)
- 3) Joseph Redmon, Ali Farhadi,YOLOv3: An Incremental Improvement,2018.
- 4) Kaiming He et al.,Deep Residual Learning for Image Recognition,2015
- 5) Tsung-Yi Lin et al, Feature Pyramid Networks for Object Detection, 2017
- 6) https://pjreddie.com/darknet/, (参照 2023-09-28)
- 7) https://pytorch.org/ (参照 2023-09-30)
- 8) Mark Everingham et al., The PASCAL Visual Object Classes (VOC) Challenge ,2009