2 サイクルゲート網羅故障の低消費電力テスト生成法

日大生産工(院) 〇溝田桃菜 日大生産工 細川利典 京産大 吉村正義 日大生産工 新井雅之

1. まえがき

近年、半導体集積技術の発展に伴い、設計される 超大規模集積回路(Very Large Scale Integrated ci rcuits: VLSI)の大規模化,複雑化,高速化が急速に 進展している. また, それに伴い不良 VLSI にはセ ルや信号線に物理的欠陥が存在し、論理回路におい ても論理機能が故障により別な論理機能に変化する 論理故障や本来の実動作速度でテストした場合に誤 った動作をするタイミング故障など様々な故障が存 在する[1]. したがって, 信号線における欠陥に加え, セル内の欠陥も増加している.本論文ではセル内の 欠陥に着目する. セル内の欠陥はレイアウト解析を おこなうことで、欠陥が存在するセルに対してどの 入力パターンでセルの出力信号線に故障励起可能か 否かを判断する. セル内の欠陥の位置やタイプによ っては特定の入力パターンでのみ故障励起可能な場 合があり、縮退故障などの基本的な故障モデルに対 するテスト集合では検出されない場合がある[2]. つ まり、セル内の欠陥は縮退故障モデルなどに比べ検 出が困難である.したがって、テスト時にセル内の 欠陥を見逃す可能性があり,不良 VLSI を良品と判 断するテストエスケープを引き起こす可能性がある [2].

本論文では、セル内の欠陥によりセルの出力信号 線の値が遷移する際に遅延が発生する故障に着目し、 このようなセル内遅延欠陥をモデル化したものを 2 サイクルゲート網羅故障モデルと呼ぶ[3].また、本 論文では、トランジスタ回路上の説明にはセル、デ ジタル回路上の説明にはゲートと呼ぶ.

2 サイクルゲート網羅故障モデルは各ゲートにお ける出力信号線の値が遷移する場合のゲートの各入 カパターンで出力信号線の値が遅延する故障を仮定 し定義する.2 サイクルゲート網羅故障数はゲート数 とゲートの入力数に依存するため,大規模回路にな るにつれ,故障数やテストベクトル数が増大する可 能性がある.したがって,テスト生成における動的 テスト圧縮[4]が重要となる.

動的テスト圧縮法の 1 つとして多重目標故障テス ト生成 (Multiple Target Test Generation: MTT G) が提案されている[4-5]. MTTG とは、複数の故 障を対象にテスト生成をおこなう手法である.ただ し、目標とした複数の故障は同時に考慮せず、それ ぞれ個別に故障の影響を考慮してテスト生成をおこ なう.

また,2サイクルゲート網羅故障モデルはタイミン グ遅延を伴う欠陥の故障モデルである.遅延故障モ デルを検出するためには、変化前の信号線値を設定 するテストパターンと変化後の信号線値を確かめる テストパターンの2種類のテストパターンを連続し て実動作速度で印加する必要がある.この方法を2 パターンテストという.本論文で着目している2サ イクルゲート網羅故障モデルにおいても2パターン テストを使用している. また, スキャンテストにお いて、2 パターンテストを実現するテスト方法の1 つであるローチオンキャプチャ(Launch-on-Captur e: LoC)方式[6]を用いる. LoC 方式は設計が容易, 高 い故障検出率などの観点から幅広く用いられている [7]. しかしながら、回路内部の信号線の遷移による 過度な電圧降下(IR Drop)[8]を引き起こす可能性が ある.過度な電圧降下は,遅延を増加させ,タイミ ング遅延を伴う故障と同じ動作を発生させる可能性 があるため, 過度なキャプチャ時消費電力が発生す るテストは誤テストを引き起こす可能性がある[9]. したがって、LoC 方式における実速度スキャンテス トでは、キャプチャ動作時の信号線の遷移数(Launc h Switching Activity : LSA)を削減することが非常 に重要である.

キャプチャ時消費電力削減手法として,擬似ブー ル最適化問題(Pseudo Boolean Optimization: PB O)[10]を用いた低消費電力指向テスト生成が挙げら れる[11]. 文献[11]は,自動テストパターン生成ツー ル(Automatic Test Pattern Generator: ATPG)で 生成された初期テスト集合の中に存在する消費電力 閾値を超えないキャプチャセーフテストベクトル[1 2]をドントケア(X)判定した後のXビットを用いて, 消費電力閾値を超えるキャプチャアンセーフテスト ベクトル[12]でのみ検出可能なアンセーフ故障[12] をできるだけ多く検出するようなテスト生成法であ る.各キャプチャセーフテストベクトルによって検 出されるセーフ故障集合と未検出のアンセーフ故障 を目標故障集合に設定し,PBO ベースのテスト生成 をおこなう.

本論文では、2 サイクルゲート網羅故障のための低 消費電力指向多重目標故障テスト生成法を提案する. 提案手法は、文献[11]と同様に PBO ベースのテスト 生成法である.はじめに全 2 サイクルゲート網羅故 障の中からテスト不能故障とアンセーフ故障を判定 し、あらかじめ削除する.次に、残りの故障から複 数の目標故障を選択し、PBO ベースの MTTG をお こなう.この時、目標故障の検出数を最大かつ消費 電力閾値以下になるように PBO を定式化する.

本論文の構成は以下のとおりである.第2章では, セル内の欠陥や2サイクルゲート網羅故障モデルに ついて説明し,第3章では,消費電力見積もり計算 手法としてWSAについて説明する.第4章では,2 サイクルゲート網羅故障の低消費電力指向多重目標 故障テスト生成手法を提案し,第5章では,実験結 果について説明する.最後に第6章でまとめと今後 の課題について説明する.

A Low Power Oriented Test Generation Method for 2cycle Gate Exhaustive Fault Momona MIZOTA, Toshinori HOSOKAWA, Masayoshi YOSHIMURA and Masayuki ARAI 2. セル内欠陥と2サイクルゲート網羅故 障モデル

本章では、本論文で着目しているセル内の欠陥と セル内の欠陥をモデル化した2サイクルゲート網羅 故障モデルについて説明する.2.1節でセル内の欠陥 について説明し、2.2節で2サイクルゲート網羅故障 モデルについて説明する.

2.1 セル内欠陥

通常の VLSI テストの場合,信号線における欠陥 をモデル化した縮退故障やオープン故障,ブリッジ 故障,遷移故障などに対してテストをおこなう.し かしながら,車載や医療など人命に関わる製品に対 するミッションクリティカルな VLSI は通常のテス トに比べ,高品質なテストが要求される.このよう な場合,信号線における欠陥以外にセル内の欠陥も 考慮する必要がある.

本論文では、セル内欠陥によりセルの出力信号線 の値が遷移する際に遅延が発生する故障に着目して いる.

図1に CMOS 構成の NAND ゲートにおけるセル 内の欠陥によりセルの出力信号線の値が遷移する際 に遅延が発生する故障例を示す.

図1内の信号線値は(1時刻目の値,2時刻目の値) である.また,各トランジスタは 2 時刻目の状態で ある. 入力 B における PMOS トランジスタに半断線 欠陥が存在すると仮定する. 図 1 の半断線欠陥は完 全に断線してはいないため、伝搬はされるが正常時 に比べ,遅れて伝搬されることが前提である.1時刻 目において入力Bの値は1よりPMOSトランジスタ は OFF となり、 欠陥の影響を受けず、 出力 Y に正常 値の 0 が出力される. 2 時刻目において入力 B の値 は0より PMOS トランジスタは ON となり、 欠陥の 影響を受け、出力Yは1時刻目の値である0を次の 信号線に伝搬し、遅れて2時刻目の正常値1が出力 Yに伝搬される. したがって, その遅延により FF に 伝搬される値が次のクロックのキャプチャタイミン グに間に合わず、正常値とは異なる値が取り込まれ る.

次に,信号線における遷移故障とセル内の欠陥に よりセルの出力信号線の値が遷移する際に遅延が発 生する故障の違いを述べる.例えば、図1の2入力 NAND ゲートの出力信号線 Y に欠陥が存在し, 値が 0から1に遷移する場合に遅延が発生したとする.あ る信号線において 0 から 1 への遷移が遅延する故障 を立上り遷移故障(slow-to-rise: STR)という. 信号線 Y における立上り遷移故障を励起する場合は,信号 線 Y に(1 時刻目, 2 時刻目)=(0,1)を割当てられるよ うな入力を与えればよい. NAND ゲートの場合,(1 時刻目の入力AB,2時刻目の入力AB)={(11,00),(11, 01),(11,10)}のいずれかを割当てることで信号線Yに おける立上り遷移故障は故障励起が可能である. かしながら、セル内の欠陥によりセルの出力信号線 の値が遷移する際に遅延が発生する故障の場合、欠 陥箇所に依存する. 例えば, 図1のセル内欠陥によ り出力Yの値が0から1に遷移する時間が遅延する 場合,2時刻目の入力AB={(00),(01)}の場合は入力A 側の PMOS トランジスタが ON となり、 欠陥に影響 を受けないため、出力Yに正常値の1が伝搬される. しかしながら,2時刻目の入力AB=10の場合はA側 の PMOS トランジスタが OFF となり, B 側の PMO S トランジスタが ON になるため、遅延欠陥が影響 し、出力Yは1時刻目の値0を次の信号線に伝搬し、

図 1. CMOS 構成の 2 入力 NAND ゲートに おけるセル内欠陥により遅延が発生した例

遅れて2時刻目の正常値の1が出力Yに伝搬される. 以上のことから,信号線における遷移故障の場合 では複数の入力パターンで故障励起可能であるが, セル内欠陥によりセルの出力信号線の値が遷移する 際に遅延が発生する故障の場合では,特定の入力パ ターンでのみ故障励起可能な場合があり,通常の信 号線における遅延故障と比べ,故障励起が困難であ る.また,セル内の欠陥を励起する場合はレイアウ ト解析をおこない,どのトランジスタで欠陥が発生 しているかを解析する必要がある。したがって,本 論文では、レイアウト解析をおこなわずにセル内欠 陥によるセルの出力信号線の値が遷移する際に遅延 が発生する故障に着目しており,この故障を2サイ クルゲート網羅故障モデル[3]とする.次に2サイク ルゲート網羅故障モデルについて説明する.

2.2 2 サイクルゲート網羅故障モデル

2 サイクルゲート網羅故障モデル[3]は各ゲートに おける出力信号線の値が遷移する場合に各ゲートの 全入カパターンで出力信号線の値が遅延する故障を 定義しており、セル内の欠陥によりセルの出力信号 線の値が遷移する際に遅延が発生する故障を網羅す る.

表1に2入力 AND の2 サイクルゲート網羅故障集 合を示す.出力信号線の値が遷移する場合の各入力 パターンにおいて故障を定義するため、ゲートの入 力数をnとした場合、2 サイクルゲート網羅故障数 は2×(2^n -1)個となる.表1の2 サイクルゲート網 羅故障数は2×(2^2 -1)=6である. f_1 から f_3 は、ゲ ート遅延により、出力信号線が0から1に遷移する 時間が遅延した故障であり、 f_4 から f_6 は出力信号線が.

表1. 2入力 AND ゲートにおける 2サイクルゲート網羅故障集合

Fault ID	inı	out	output		
	1-time	2-time	1-time	2-time	
f_1	00	11	0	1/0	
f_2	01	11			
f_3	10	11			
f_4	11	00	1	0/1	
f_5	11	01			
f ₆	11	01			

1から0に遷移する時間が遅延した故障である.また, 各ゲートの2サイクルゲート網羅故障集合は同一の テストベクトルでは検出されない独立故障集合[13] である.

3. WSA

本論文では、実速度スキャンテスト方法の1つで あるLoC方式を用いる.実速度スキャンテスト特有 の消費電力として、シフト時消費電力[14]とキャプチ ャ時消費電力[14]が挙げられる.本章では、VLSIの 消費電力の見積もり手法であるWSA について説明 する.

VLSIの消費電力の見積もり手法として,消費電力 と相関が高く,計算が容易なWSAが広く用いられて いる[14].本論文では,WSAを用いる.WSA は電 源電圧,動作周波数,負荷容量などを考慮した厳密 な消費電力計算をおこなわず,ゲートの出力信号線 の遷移数から消費電力の見積り値を計算する.式(1) にWSAの計算式を示す.

$$WSA(v_j) = \sum_{i=1}^{G} tran(g_i) \times (1 + fanout(g_i)) \quad (1)$$

式(1)において、v;はテストベクトル、G は回路内に 含まれる総ゲート数である. tran(g)はゲートgの出 力値に遷移が発生している場合は1を返し、遷移が 発生してない場合は0を返す関数である. fanout(g) はゲートgiの分岐信号線数を返す関数である.1は 遷移が発生したゲートの重み付けのために足し込ま れる.1つのテストベクトルに対する回路全体のWS A値は、回路内の各ゲートのWSA値の合計として算 出される.WSA値が小さいテストベクトルほど値が 遷移された信号線の数が少ない.すなわち、消費電 力が低いことを示す.

2 サイクルゲート網羅故障テストの低 消費電力指向多重目標故障テスト生成 法

本章では、本論文の提案手法である 2 サイクルゲート網羅故障のための低消費電力指向テスト生成法 を説明する.本論文では、PBO を用いて消費電力を 考慮する.4.1節で PBO について説明し4.2節で低 消費電力を考慮する制約の定式化について説明し、4. 3節に2サイクルゲート網羅故障の低消費電力指向 テスト生成法のアルゴリズムについて説明する.

4.1 PBO

擬似ブール最適化(Pseudo Boolean Optimization: PBO)は、与えられたすべてのブール制約を充足し、 最適化関数を最小化するブール変数割当てを求める 最適化問題である。割当てが存在する場合は充足可 能(Satisifiable: SAT)となり、そうでない場合は充 足不可能(Unsatisfiable: UNSAT)となる.

4.1 信号線抑制制約と消費電力閾値

キャプチャ時消費電力を削減するためには,信号 線の遷移を抑制する必要がある.しかしながら,遷 移抑制制約は故障の検出を妨げる可能性がある.そ のため,緩和変数を用いて遷移抑制制約の定式化を おこなう.式(2)に信号線 x の遷移抑制制約の定式化 を示す.

> Const_{trin}: $sw + x1 \cdot x2 + \overline{x1} \cdot \overline{x2} = 1$ $sw, x1, x2 \in \{0,1\}$ (2)

式(2)における xIは1時刻目の変数, x2は2時刻目 の変数, swは緩和変数である. $(x1,x2)=\{(0,0),(1,1)\}$ において式(2)は充足可能である. $x1 \cdot x2 + x1 \cdot x2$ が 充足不可能な場合は, swに1を割当てることで充足 させる.

これらの遷移抑制制約を正常回路の全信号線に対 して構築し*sw*の総和を求めることでWSA値を算出 することが可能である.本論文では、テスト生成時 にWSA値を消費電力閾値以下にする制約を追加す ることで、キャプチャアンセーフテストベクトルを 生成しない.消費電力制約式を式(3)に示す.

$$Const_{WSA} = \sum_{i=1}^{N} sw_i \le WSA_{th} \quad (3)$$

式(3)における Nは緩和変数の個数, sw_iは各信号線に おける緩和変数, WSA_{th}は WSA 閾値を示す.

4.3 2サイクルゲート網羅故障の低消費電 力指向テスト生成法

本節では、提案手法である2 サイクルゲート網羅 故障の低消費電力多重目標故障テスト生成法のアル ゴリズムを述べる.図2に全体アルゴリズムを示す. 入力は回路 C, 消費電力閾値 WSAth である. 出力は テスト集合T_{set}, テスト不能故障集合UTF_{set}, アンセ ーフ故障集合HPF_{set},検出故障集合DF_{set}である.ま た,故障集合をFset,目標故障集合を TF,制約式を φPBO, PBO ソルバーの解を Solution, テストベク トルを tvとする.はじめに、テスト集合を初期化す る(1行目).次に、回路から2サイクルゲート網羅故 障集合F_{set}を作成する(2 行目). 次に, 故障ごとにテ スト不能故障であるか否か判断し、テスト不能故障 の場合はUTF_{set}に追加する(3行目). 次に, テスト不 能故障と判断された故障をF_{set}から削除する(4 行目). 次に,残りの故障からさらにアンセーフ故障を探索 し、F_{set}から削除する(5,6 行目). 次に、残りの故障 を未検出故障集合とし、未検出故障集合がなくなる まで8行目~13行目までの工程を繰り返しテスト生 成をおこなう(7行目).はじめに未検出故障集合から 目標故障 TFを選択する(8 行目). 次に TF に対して 制約式 *o*PBO を 作成 する (9 行目). 次に, *o*PBO を 満た すような解 Solution を探索する(10 行目). 次に, So lution からテストベクトル tvを生成する(11 行目). そして, tv に対して故障シミュレーションをおこな い,検出された故障はDF_{set}に追加し,F_{set}から削除 する(12行目). 最後にT_{set}に tvを追加する(13行目). 全ての未全ての未検出故障を検出した後, Tset, UTF_{set}, HPF_{set}, DF_{set}を返し終了する(15行目).

図2. 全体アルゴリズム

Algor	ithm Low-Power Oriented Multiple Target Test Generation for 2cycle Gate Exhaustive Faul
Input	: Circuit C, WSA WSAth
Outpu	t : Test set T_{set} , Untesable fault set UTF_{set} , High-power Fault set HPF_{set} , Det fault set DF_{set}
1. 7	$\sigma_{set} = \phi$
2. F	$T_{set} = 2$ cycle gate exhaustive fault set(C);
3. U	$TF_{set} = $ Untestable_Delete(C, F_{set});
4. F	$F_{set} = F_{set} - UTF_{set};$
5. H	<pre>IPFset=High_Power_Fault_Delete(C, Fset, WSAth);</pre>
6. F	$F_{set} = F_{set} - HPF_{set};$
7. 1	while $(F_{set} \neq \varphi)$ then
8.	$TF = Fault_Selection(C, F_{set});$
9.	$\phi PBO = PBO_Test_Generation(C, TF, WSAth);$
10.	Solution = Solver(ϕPBO);
11.	<pre>tv = Generation_Test_Vector(Solution);</pre>
12.	$(F_{set}, DF_{set}) = Fault_Simulation(C, tv, F_{set});$
13.	$T_{set} = T_{set} \cup tv;$
14.	endwhile
15.	return(T _{set} , UTF _{set} , HPF _{set} , DF _{set});
16.	end

実験結果 5.

本章では,実験結果について説明する.提案手法は C 言語で実装され, Core i7-13700, 16GB メモリ搭 載の PC を用いて実験をおこなった.対象回路は IS CAS'89 ベンチマーク回路である. ソルバーとして, Clasp3.3.4[15]を使用した. また, WSA 閾値は総信 号線の20%に設定した.

表2に実験結果を示す.表2において左から回路 名,2 サイクルゲート網羅故障数,MTTG で WSA 閾値を満たしテスト生成が成功された故障数,消費電 力制約を入れずに充足不能になる故障数(図2の3行 目), アンセーフ故障数(図 2 の 5 行目), テストパタ ーン数, 故障検出率, 1回のテスト生成におけるソル バー制限時間である.また,各故障数の括弧内の割 合は全故障数の内の割合である.

表3から、2サイクルゲート網羅故障の内、平均で 55.93%が消費電力制約を入れずに充足不能になる故 障である.また、アンセーフ故障は平均で 2.99%の 割合で存在する. しかしながら, アンセーフ故障数 が0 である回路も複数存在する. アンセーフ故障数 が0である原因として、2サイクルゲート網羅故障モ デルは他の故障モデルに比べ、故障励起時の制約が 多いため、元々、消費電力制約を入れずに充足不能 になる故障が非常に多いからであると考えられる. またこれらの原因により、故障検出率は他の故障モ デルに比べ非常に低いことがわかる.

まとめと今後の課題 6.

本論文では、2 サイクルゲート網羅故障のための低 消費電力指向多重目標故障テスト生成法を提案した. 実験結果から、2 サイクルゲート網羅故障数は平均 で 55.93%が消費電力制約を入れずに充足不能にな ることがわかった. テスト不能故障が多い原因とし て、故障励起時に他の故障モデルに比べ、制約数が 多いことだと考えられる.

また問題点として、テスト生成時間が長いことが 挙げられる.

今後の課題は、本論文では CNF 式で制約式を記述 していたが、ゲートの制約式をさらに簡略化し、テ スト生成時間の削減に試みることである.

参考文献

- 1) 藤原秀, ディジタルシステムの設計とテスト, 工学図書 株式会社, 東京, 2004, pp 135-135.
- 2)K.Y. Cho, S. Mitra, and E.J. McClusky, "Gate Exhaustive Testing", IEEE International Confere

nce on Test, Austin, USA, Nov.2005, no.31.3, p p.1-7.

- Irith Pomeranz, " Efficient Identification of Undet 3) ectable Two-Cycle Gate-Exhaustive Faults", Proc.o f IEEE Transactions on Computer-Aided Design o f Integrated Circuits and Systems, 2022, Volume:4 1 Issue 3.
- G. Tromp, "Minimal Test Sets for Combinational 4) Circuits," IEEE International Conference on Test, no.7.3, pp.204-209, Nashville, USA, Oct.1991.
- 5) J.S. Chang, and C.S. Lin, "Test set compaction fo r combinational circuits, "Browse Journals&Maga zines, vol.14, Issue.11, pp.1370-1378, Nov 1995.
- J.Savir, and S.Patil "On Broad-Side Delay Test" $\mathbf{6}$ VLSI Test Symposium, " pp.284-290 1994.
- L. -T. Wang, C. -W. Wu and X. Wen "VLSI Test 7)Principles and Architectures," Design for Testabili ty, San Francisco, CA, USA., 2006.
- 8) J. Saxena, K. M. Butler, V. B. Jayaram, S. Kund u, N. V. Arvind, P. Sreeprakash and M. Hachinge r, "A case study of IR-drop in structured at-spee d testing," Proc. ITC, pp. 1098-1104, 2003.
- Y. Zorian, "A Distributed BIST Control Scheme f 9) or Complex VLSI Devices," Proc. VTS, pp. 4-9, 1 993.
- Vasco Manquinho, Ruben Martins, and Ines Lync 10)e, "Improving Unsatisfiability-Based Algorithms f or Boolean Optimization," Theory and Application s of Satisfiability Testing-SAT 2010
- 11) 三浦怜, 細川利典, 山崎紘史, 吉村正義, 新井雅之"低 消費電力指向多重目標故障テスト生成法"ディペンダブ ルコンピューティング研究会, 2021年12月, 信学技法, vol 121, no.293, DC-2021-55, pp.1-6
- 12) X. Wen, K. Miyase, S. Kajihara, H. Furukawa, Y. Yamato, A. Takashima, K. Noda, H. Ito, K. Hat ayama, T. Aikyo and K. K. Saluja, "A Capture-S afe Test Generation Scheme for At-Speed Scan T esting," Proc. ETS, pp. 55-60, 2008
- 13) S. B. Akers, C. Joseph, and B. Krishnamurthy," On the Role of Independent Fault Sets in the Ge neration of Minimal Test Sets", in Proc. Intl. Te st Conf, 1987, pp.1100-1107.
- 14) A.Krstic, and K-T.Cheng, "Delay Fault Testing for VLSI Circuits," Springer, 1998.
- 15) M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, " Conflict-Driven Answer Set Solving, IJCAI, pp.386-392, Hyderabad, India, January 20 07

表3. 実験結果												
回路名	2サイクル	検出故障数	テスト不能故障数	アンセーフ故障	テストパターン数	故障検出率	打ち切り時間					
	ゲート網羅故障数					[%]	[s]					
s1494	5310	219	4136	955	17	4.12	10					
		(4.12%)	(77.89%)	(17.98%)								
s5378	13502	6556	6946	0	872	48.56	60					
		(48.56%)	(51.44%)	(0.00%)								
s9234	23102	13533	9569	0	1428	58.58	120					
		(21.26%)	(71.58%)	(0.00%)								
s15850	37856	16749	21107	0	343	44.24	120					
		(44.24%)	(55.76%)	(0.00%)								
s38417	89458	71748	17710	0	NA	80.20	120					
		(80.20%)	(19.80%)	(0.00%)								
s38584	106194	43456	62738	0	NA	40.92	120					
		(40.92%)	(59.08%)	(0.00%)								

....