北海道胆振東部地震における地震被害抽出を目的とした

コヒーレンスの差分画像の特徴分析

日大生産工(院)	〇木村	舜	日大生産工野中	崇志
日大生産工	朝香	智仁	日大生産工(特任教授) 杉村	俊郎
日大生産工(特任教授)岩下	圭之		

1. まえがき

地震大国である日本では、南海トラフ地震等, 広範囲に甚大な被害をもたらす大規模地震発 生後の対応が課題となっており、その一例とし て地震発生直後の迅速な被害状況の把握があ げられる.昼夜、天候を問わず、広域的かつ迅 速に地表面の状況を把握することが可能な合 成開ロレーダ(Synthetic Aperture Radar, SAR)による衛星リモートセンシングは、上記 の課題に対して有効な手段として期待されて いる.

既往研究では, 熊本地震を対象として, SAR を用いて地域レベルの建物被害状況の把握を 試み, 現地調査との比較による評価を行った. その結果, 後述するコヒーレンスと建物倒壊率 の間で負の相関が確認された.一方で, 異なる 条件下での手法の適用による汎用性の検討, 及 びコヒーレンス低下が地震に起因するか否か の特定は不可欠である.

本研究では2018年9月6日に発生した北海道 胆振東部地震において甚大な被害が確認され た北海道厚真町を対象に,ALOS-2に搭載され たPALSAR-2により取得したデータから作成 したコヒーレンスと現地調査データから算出 した被害率を比較することで,建物の被害状況 を評価し,既往研究の結果の汎用性を検討する とともに,コヒーレンスの差分画像を用いた地 震被害抽出に関する知見を得ることを目的と する.

2. 使用データ及び解析サイト

本研究で用いた地球観測衛星ALOS-2(2014 年打ち上げ)はJAXAが運用しており, PALSAR-2を搭載している.PALSAR-2はLバ ンドのSARであり,自らマイクロ波を地球に向 けて照射し,対象物からの後方散乱を受信して いる.Table 1に使用したSARデータの諸元を 示す.また,都市域のみを対象としてコヒーレ ンスを用いた解析を行うため,JAXAが作成し た高解像度土地利用土地被覆分類図を用いた. 被害率の算出には厚真町が罹災証明のため に作成した建物被害の現地調査データを用い た.半壊以上を被害ありと定義し,算出した. 本研究ではFig.1に示す,北海道胆振東部地 震において震源に近かった厚真町の本郷,及び

展において展廊に近かった厚具町の本郷,及び 上厚真において,300mメッシュのエリアを対 象として分析を行った.

Table 1 SARデータの諸元

日付	撮影モード	解像度	オフナディア角	
2018.6.14	百八韶华	3m		
2018.8.23	同刀件肥		32.4°	
2018.9.20	- <u> </u>			

Fig.1 北海道厚真町の位置と300mメッシュ

- 3. 解析手法
- 3.1 解析で使用した指標

本研究では指標としてコヒーレンスを用いた.本指標は2つの電磁波の干渉性の度合いを示し,0~1の値をとる.値が大きいほど干渉が良いことを示す. SARの解析においては(1)式を用いて作成される.

Characteristic Analysis of Coherence Differential Images for Earthquake Damage Extraction in the Hokkaido Iburi East Earthquake

Shun KIMURA, Takashi NONAKA , Tomohito ASAKA , Toshiro SUGIMURA and Keishi IWASHITA

$$\gamma = \frac{|\langle CmCs * \rangle|}{\sqrt{\langle CmCm * \rangle \langle CsCs * \rangle}}$$
(1)
 $\gamma : \exists E - \nu \vee \varkappa$
Cm:日付(m)の複素データ,
Cs:日付(s)の複素データ
*:複素共役

3.2 解析手順

Fig.2に解析手順のフローを示す.最初に,地 震前後(8月23日,9月20日)のSARデータと,土 地被覆分類図を用いて都市域のみを抽出した コヒーレンス画像を作成し,被害率との相関解 析を行う.次に,上記と同様の手順で地震前同 士(6月14日,8月23日,以後前前)のコヒーレ ンス画像を作成した後,平時のコヒーレンス低 下を抽出可能なコヒーレンスの差分画像を作 成し,回帰式から離れたメッシュに関して,差 分画像を用いた分析を行う.

4. 解析結果及び考察

4.1 コヒーレンスと被害率の関係

Fig.3に厚真町の前後コヒーレンス画像 (Fig.1(a)の範囲)を示す.西側が低く,東側が高 いという空間分布であるが,建物被害との間に は有意な関係は確認できなかった.

次に、メッシュごとのコヒーレンスと被害率 の関係をFig.4に示す. 負の相関が見られた一 方で、相関係数は-0.42と、熊本地震の-0.63よ り低かった. この要因として、厚真町では建物 被害がほとんどコヒーレンスに影響しない程 度であったことに加え、砂利等の時間変化によ る平時のコヒーレンス低下の影響が考えられ る.

4.2 コヒーレンスが低くなる要因の分析

本節ではコヒーレンスの差分画像を用いて, コヒーレンスが低下する要因を分析する. Fig.5に(a)コヒーレンスの差分画像,及び(b)そ の拡大画像,(c)同一地点の前後コヒーレンスの 拡大画像を示す.差分画像は低下した場所のみ を表示するために,レンジを0≦1に設定した. (a)の赤メッシュ(Fig.4で赤く囲ったメッシュ に対応)内でコヒーレンスが低下した場所(青 枠)は,(b)と(c)の両方の画像でそれぞれの値が 低くなっており,この場所では建物の分布は疎 であった.

一方で,建物の分布が密なメッシュはコヒー レンスが高かった.これより,建物の分布が疎 な場所におけるコヒーレンスの低下は,砂利等 の時間変化による,建物以外の平時の変化等が 要因であることが示された.

5. まとめ

本研究では既往研究の手法の汎用性の検討 に加え、コヒーレンスの差分画像の特徴分析を 通して、地震被害抽出における知見を得ること を目的とした.その結果、厚真町においても負 の相関が確認できたほか、差分画像を用いて厚 真町のコヒーレンス低下要因を抽出すること ができた.

Fig.2 解析のフロー

Fig.3 厚真町の前後コヒーレンス画像

Fig.4 コヒーレンスと被害率の関係

Fig.5 (a)コヒーレンスの差分画像,及び (b)その拡大画像, (c)コヒーレンスの拡大画像