# 変動軸力を受ける CFT 柱に関する研究

-その1実験計画と予備計算-

日大生産工(学部) ○高橋 誠人 日大生産工 藤本 利昭 日大生産工(院) YUAN Chenghao

中心圧縮実験

## 1. まえがき

コンクリート充填鋼管(CFT: Concrete Filled Steel Tube,以下,CFT と略記)構造は 鋼管の内部にコンクリートを充填した鋼とコ ンクリートの合成構造のことである。強度・剛 性・靱性能に優れているため,鉄骨造,鉄筋コ ンクリート造,鉄骨鉄筋コンクリート造に次ぐ 第四の構造として注目されている。

一般的に,中高層建物の下層階の柱は,地震 時において大きな変動軸力を受ける。従って、 変動軸力下における柱部材の力学的特性を把 握する事は,構造上より安全な建物を設計する 上で非常に重要である1)2)。しかし,既往の圧縮 実験の殆どが単調載荷の実験であり,繰り返し 載荷での実験は数少ない。 さらに, その多くが 軸方向力のみを受ける際の実験であり,軸方向 力と曲げモーメントを同時に受ける際の実験 は非常に数が少ないのが現状である。そこで, 本研究では軸力のみを受ける場合, 軸力と曲げ モーメントを同時に受ける場合におけるCFT 柱の構造性能の違いを把握することを目的と し、中心圧縮実験と偏心圧縮実験を行い、偏心 圧縮実験では,単調載荷と繰り返し載荷実験を 行った。

本研究(その1)では、実験計画と予備計算に ついて報告する。

## 2. 実験概要

#### 2.1) 試験体概要

図-1に試験体形状を示す。全ての試験体は, 幅*B*およびせい*D*を150mm,板厚*t*=6mmの角 形鋼管を使用し,試験体長さ*L*は,幅およびせ いの3倍の450mmとした。

偏心圧縮実験の変数は、コンクリートの充填 の有無(CFT, S),偏心距離e(=25,50mm),載 荷ルール(一方向単調,一方向繰り返し)とした。

CFT試験体は, 偏心距離 *æ*25mm, 50mmの 2種類とし, 載荷ルールは, それぞれ単調と繰 り返しとした4体である。 鋼管試験体は、CFTとの比較として、偏心距 離 = 50mmとし、単調と繰り返しの2体とした。 また、比較のためCFT、鋼管試験体について、 中心圧縮試験体も各1体製作した。試験体は合 計で8体である。



偏心圧縮実験

図-1 試験体形状(単位:mm)

表-1 鋼材の材料試験結果

|         | 板厚<br><i>t</i> (mm) | 降伏強度 $\sigma_y({ m N/mm}^2)$ | 引張強度 $\sigma_u(\mathrm{N/mm}^2)$ | ヤング係数<br>$E_s$ (N/mm <sup>2</sup> ) | 伸び率<br><i>ε</i> (%) |
|---------|---------------------|------------------------------|----------------------------------|-------------------------------------|---------------------|
| STKR400 | 5.96                | 381                          | 428                              | 205000                              | 31                  |

表-2 コンクリート調合表

|          | W/C(%) | 単位質量(kg/m <sup>3</sup> ) |     |     |     |      |      |  |
|----------|--------|--------------------------|-----|-----|-----|------|------|--|
|          |        | セメント                     | 水   | 細骨材 |     | 粗骨材。 | 泪毛立  |  |
|          |        |                          |     | 砂   | 砕砂  | 砕石   | 化化们们 |  |
| ※通コンクリート | 51     | 365                      | 186 | 545 | 235 | 948  | 3 65 |  |

表-3 コンクリートの材料試験結果

|          | 設計基準強度                              | 圧縮強度               | ヤング係数                          | E縮強度ひずみ      | 材齢  |
|----------|-------------------------------------|--------------------|--------------------------------|--------------|-----|
|          | F <sub>c</sub> (N/mm <sup>2</sup> ) | $\sigma_B(N/mm^2)$ | <i>Ec</i> (N/mm <sup>2</sup> ) | <i>ε</i> (%) | (日) |
| 普通コンクリート | 36                                  | 36.9               | 34.7                           | 0.18         | 77  |

表-1に鋼材の材料試験結果を示す。試験体に は一般構造用角形鋼管STKR400材を使用し、 材料試験片は5号試験片とし引張実験を行った。 表-2にコンクリート調合表を、表-3にコンク

リートの材料試験結果を示す。試験体のコンク リートは設計基準強度*F*=36(N/mm<sup>2</sup>)の普通コ ンクリートを用いた。

偏心圧縮を受けるCFTの試験体名称は単調 載荷を受けるものを"CME",繰り返し載荷を 受けるものを"CCE",偏心圧縮を受ける鋼管 の試験体名称は単調載荷,繰り返し載荷それぞ れ"SME","SCE"とし,偏心距離を組み合 わせて示す。偏心圧縮を受けるCFTとの比較に 用いる中心圧縮を受ける試験体名称は、CFT,

The Research of CFT Columns Subjected to Variable Axial Forces — Part1 Experimental Plan and Preliminary Calculation —

Masato TAKAHASHI, Toshiaki FUJIMOTO and Chenghao YUAN

Sそれぞれを"C", "S"とし, 鋼管幅を組み 合わせて示している。

- 2.2) 実験方法
- 2.2.1) 中心圧縮実験

図・2a)に中心圧縮実験に用いた載荷装置お よび変位計設置位置を示す。加力は5000kN構 造物試験機を使用し,試験体上下の拘束条件は 固定とした。載荷は一方向単調載荷とし,平均 軸ひずみをが5%に達するまで行った。実験に際 して,断面に一様な荷重が作用するように試験 体の打設面に硬質石膏による表面処理を施し て行った。測定は,2本の変位計より得られる 軸方向変位( $\delta$ , $\delta$ )の平均値から試験体全長*L*の 平均軸ひずみを泡定した。

#### 2.2.2) 偏心圧縮実験

図-2b)に偏心圧縮実験に用いた載荷装置お よび変位計設置位置を示す。加力は2000kN万 能試験機を使用し,試験体の拘束条件は上下と もにピンとし, 偏心距離 eが所定の値となるよ うに取り付けた。変位計は試験体上下に設置し た加力用プレート間の軸方向変位を測定する ため四隅に設置した4本と、水平方向の変位を 測定するための2本、合わせて6本使用した。軸 方向の変位計はそれぞれ試験体中央から 75mmの位置に両端を垂直に固定し設置した。 水平方向の変位計は試験体中央部に設置し測 定した。載荷は単調載荷および繰り返し載荷と した。単調載荷は平均曲率 *o* D(D: 断面のせい) が5%に達するまで行った。繰り返し載荷は曲 率0.5%ずつ増加させる漸増載荷とし、 *φD*が 5%に達するまで行った。また、平均軸ひずみ および平均曲率は以下の(2-1)式, (2-2)式より 算出した。



b) 偏心圧縮試験

図-2 載荷装置および変位計設置位

- $\varepsilon = \frac{\delta_{ave}}{L} \qquad \cdot \cdot \cdot (2-1)$  $\phi D = \frac{(\delta_t + \delta_c)/L}{l} \cdot D \qquad \cdot \cdot \cdot (2-2)$
- $\varepsilon$ : 平均軸ひずみ, $\delta_{ave}$ : 平均軸方向変位, L: 試験体高さ, $\phi D$ : 平均曲率,  $\delta_t$ : 平均引張変位, $\delta_c$ : 平均圧縮変位, l: 変位計間の距離(=150mm)
- 3. 予備計算および検討

実験を行うにあたり,試験体の終局耐力を把 握するために予備計算を行った。

表-4に中心圧縮を受けるCFTと鋼管, 偏心圧 縮を受けるCFTと鋼管の最大軸力と最大曲げ モーメントの計算結果一覧, 図-4にCFTと鋼管 の終局耐力曲線を示す。終局耐力曲線で使用す る最大軸力Nおよび最大曲げモーメントMは コンクリート充填鋼管構造設計施工指針<sup>3</sup>によ る一般化累加強度式により算出した。

表-4 計算結果一覧



#### 4. まとめ

本報では、中心圧縮と変動軸力下で偏心圧縮 を受けるCFTおよび鋼管の実験計画と予備計 算について報告した。

実験結果に関する内容はその2に示す。

参考文献

- 成原弘之,安田聡,佐藤英佑,字佐美徹,鈴木康正,長谷川隆, 長周期地震動に対する鉄骨造超高層建物の安全性検証の方法の 検討,日本建築学会学術講演梗概集.(2014), pp1251-1252.
- 2) 齋藤健,福島正樹,土井希祐,変動軸力を受ける円形CFT柱部 材の変形性能とエネルギー吸収性能(その1実験概要と実験結 果),日本建築学会学術講演梗概集,(2006),pp1059-1060.
- 日本建築学会:コンクリート充填鋼管構造設計施工指針, (2008), pp30-31.