高密度ヘリコン波プラズマ源の開発に関する研究

日大生産工(院) ○草苅 真生

1. まえがき

近年、プラズマ生成法は多岐にわたってお り、発生原理が単純でないものも多い。その 主たる発生機構として、放電、光電離、熱電 離がある。その中で、高周波を用いたヘリコ ン波によるプラズマ生成は、波動を利用して 効率よく高周波磁場が入るため、他のプラズ マ源より容易に高電離で、高密度なプラズマ が比較的に低い電力で得られる。本研究では、 ヘリコン波プラズマ源の開発と、ヘリウムガ スを流入して生成したプラズマにラングミュ アプローブ法を用いて解析した結果について 記述し、今後の展望について述べる。

実験装置

最大出力3kW,周波数が13.56MHzの高周波電 源からインピーダンス整合回路を介してアン テナに高周波電流を流し,真空容器と接続さ れた放電管内にプラズマを生成する. ヘリウ ムを使用し,マスフローコントローラを用い てガスの流量制御を行う.また,直流電源を 用いてコイルに電流を流し,磁場を形成する. アンテナの空冷はシロッコファンで行い,冷 却水でコイルの熱負荷を抑えている.プラズ マは真空容器内を磁場の向きに移動し,プロ ーブによるパラメータの測定後に排気される. 装置内の排気はターボ分子ポンプと真空ポン プによって行われる

3. 実験方法および測定方法

プラズマの諸量測定にはラングミュアプロ ーブ法を用いて行った。ラングミュアプロー ブ法は、プラズマ中に微小電極(プローブ) を挿入し、そこから電流をとることによって 荷電粒子密度、電子温度、エネルギー分布な どのプラズマパラメータを局所的に求めるこ とができる手法である。挿入したプローブに プローブ電圧Vpを印加し、流れるプローブ電 流Ipを測定するとFigのような電圧一電流特性 グラフを得られる。プローブ電流Ipは主に3 領域に分類される。イオン電流と電子電流が 釣り合う、プローブ電流が0になる電位を浮 遊電位Vfという。浮遊電位より負の領域をイ

オン飽和領域という。浮遊電位よりさらに負 にすると電子電流は減少し、プローブにはイ オン電流が多く流れるため、Fig.1のように接 線を引くことで、イオン電流Iisを求めること ができる。電子電流Ieはプローブ電流Ipから イオン電流を差し引くことで求めることがで き、Fig.2で示すように電子電流の片対数をと り特性グラフを書き、引いた2本の接線の交 点が空間電位Vsとなる。そして空間電位Vsと |浮遊電位Vfの間の指数関数的に増加している 領域を電子電流反発領域という。プローブ電 位が空間電位より正になると、イオンはプロ ーブ表面から追い返され、電流は引き寄せら れるため、電子電流が増大する。この領域を 電子飽和領域という。電子温度Teは測定され たプローブ電流をイオン電流と電子電流にわ け、電子電流の対数をVpに対して微分する。 式(1)で求まる。

$$\frac{d}{dv_p}\ln Ie = \frac{e}{k_B T e} \tag{1}$$

Fig.1 理想的なV-I特性グラフ

The Characteristics of Trial Production Equipment - Comparison of the Characteristic by the System

Taro NICHIDAI, Izumi NARASHINO and Shina TAKUMA

P-3

Fig.2 V-I 特性グラフ(片対数) $I_{is} = \frac{1}{4}eSn_e \sqrt{\frac{8k_BTe}{\pi m_e}}$ (2)

電子密度*n_e*は、(2)を用いて(1)から 算出した電子温度を用いて求まる。

4. 実験結果

実際にプローブによる測定を行った特性グラフをFig.3に示す。

Fig.3 測定した電圧―電流特性 Fig.4に電子電流を片対数に取った特性グラフ を示す。2つの特性グラフから得られた 300Wの電力を印加した時の測定結果を Table.1に示す。

バイアス電圧IVI

電力	Vs	Iis	Te	$egin{array}{c} n_e \ [m^{-3}] \end{array}$
[W]	[V]	[mA]	[eV]	
300W	-40.3	1.27	19.9	6.38 · 10 ¹⁶

Table.1 300W解析結果

空間電位が低いことから、プラズマのポテン シャルがマイナスになっていることが分かる。 また、入力電力が高くないにも拘わらず、電 子温度や電子密度が高いのは使用しているRF 電源の影響だと考えられる。

Fig.4 片対数を取った測定結果

Fig.5 と Fig.6 は RF 電 力 を 50,100,150,200,250,300Wと上昇させた時の 電子温度と電子密度のRF電力依存性について 示したグラフになる。電子温度は、100Wか ら150Wに電力を上げると急激に温度が上昇 していることがわかる。Fig.6からは電子密度 は、電力を上げていくと指数関数的な増加を していることが見て取れた。測定した密度は すべて10¹⁶[m^{-3}]と低密度であり、目的である 高密度へリコン波プラズマ生成を行うにはよ り大きな電力を入力する必要がある。

Fig.5 電子温度のRF電力依存性

・ プローブ電流[mA]

Fig.6 電子密度とRF電力依存性

5. まとめ

開発したプラズマ源により、生成したプラ ズマ測定はラングミュアプローブ法により諸 量の測定を行っている。結果からは、他のプ ラズマ源より負のポテンシャルを持ったプラ ズマ源ということがわかる。そして、V-I特性 グラフの電子領域が飽和に向かっていない原 因も、プラズマが大きな負のポテンシャルを 持っていることが影響していると考えられる。 また電子温度や電子密度は通常の結果より大 きな値を取っているため、RF電源の影響があ ることが分かった。今後は、RF電源の影響があ ることが分かった。今後は、RF電源の影響の 影響を低減するためプローブに補正をかけよ り精度を上げたパラメータ測定を行う予定で ある。

参考文献

- 1) Resent Topics on high Density Plasma Production by Helicon Waves. SHINOHARA shunjiro (2001)
- 2) 佐藤 浩之助 名古屋大学プラズマ研究 所 「Ⅲ.プラズマ発生法・形態」
 J.IEE,Vol 107
- 注司多津雄,坂和洋一,ヘリコン波とその反応性プラズマへの応用(1998)
- イ村 建 「放電プラズマ工学」
 電気学会、オーム社共同