基質結合領域の構造変化と基質に対する親和性の変化

日大生産工(院) ○久保田 達哉 東邦大理 後藤勝 大工大工 大島敏久 日大生産工(院) 吉宗一晃

1. 緒言

ホモセリン脱水素酵素(HSDH)はアスパラ ギン酸からスレオニンなどの必須アミノ酸を 合成する経路であるアスパラギン酸経路の鍵 酵素である.生育至適温度が約 80℃の超好熱 アーキア Sulfurisphaera tokodaii 由来 HSDH(StHSDH)を常温性の大腸菌(37℃培養) で遺伝子組換え生産すると活性の低い未成熟 酵素が得られる.この未成熟酵素は 70℃で 3 時間の熱処理を行うと活性が約2倍高い熱成熟 酵素となる.未成熟酵素の立体構造解析に初め て成功し,既知の熱成熟酵素の構造と比較した. 本報告では,未成熟酵素と熱成熟酵素の構造と 活性の違いについて報告する.

全生物は真核生物,真正細菌,アーキアの3 つに大別することができる.1977年から1990 年にかけて米国イリノイ大学のWoeseらによ って全生物を16S rRNA系統解析によって全生 物を真核生物ドメイン,真正細菌ドメイン,ア ーキアドメインの3つに大別,3ドメイン説が提 唱された.

一般的に酵素等は熱に弱く過剰の熱が加わ ると変性しその活性を失ってしまう.しかしな がらアーキアの中でも超好熱アーキアと呼ば れるものは70℃以上に至適生育温度を有し, 酵素が高い熱安定性を有する物も存在してい ることが確認されている.

酵素は生体触媒で、20種類のアミノ酸が100 ~1000個つながったひものようなタンパク質 からできており、細胞内のリボソームで遺伝子 情報により生産される.このひものようなタン パク質が生産されると一つの形に折りたたま れ、本来の触媒機能(活性)をもつ立体的な構 造を形成する.この折りたたみは生物(細胞) が正常に増殖できる環境(温度など)では非常 に早いため、これまでその途中の未熟な酵素の 形はなかなか捉えることができないとされて いる. 一般に酵素分子はボール状の形をしており, 基質と結合し触媒機能を発揮する活性中心部 位とそれを支える構造形成部位が連携して存 在する.この活性中心部位は基質(NAD)と 結合する前は開いた構造をとっており,基質が 結合すると閉じた構造へ大きく変化する.

HSDH(EC.1.1.3)は酸化還元酵素に分類される.HSDHは細菌や植物に存在し,アスパラ ギン酸からメチオニン,トレオニン及びイソロ イシンなどの必須アミノ酸を生合成する経路 の反応を触媒する.このアスパラギン酸経路 は植物や真菌、細菌及びアーキアには存在する が,動物はこの経路を持っていないため, HSDHの阻害剤はヒトに害のない除草剤や抗 生物質を作る際の標的にもなる経路の一つで ある.

本研究で用いられる酵素は、超好熱アーキア (古細菌)由来である.未成熟酵素と熱成熟酵素 の構造の違いを明らかにするために超好熱ア ーキアの遺伝子を大腸菌で組換え生産し,得ら れた組換え酵素を精製した.

2. 実験方法および測定方法

酵素の比活性とタンパク質定量の作成のために検量線を作成した.検量線作成にはBCA 法を用い,標準タンパク質にウシ血清アルブミンを用いた.

超好熱古細菌由来のStHSDHに遺伝子 ST1519 を挿入した発現プラスミド pST1519 で大腸菌 *Escherichia coli* BL21 (DE3) 株を形質転換した. その後, 37℃で 拡大培養した. 大量培養によって得られた培 養液を遠心分離して集菌した. 集菌後, 氷上で 超音波破砕をした. 破砕後に遠心分離して上清 を回収し,透析を行った.

得られた上清を熱処理せずにDEAE TOYOPEARL樹脂を用いた陰イオン交換クロ マトグラフィーで夾雑タンパク質の除去を行

Conformational changes in substrate-binding regions and substrate-binding affinity by thermal maturation of homoserine dehydrogenase from hyperthermophilic archaeon

Kubota Tatsuya, Goto Masaru, Ohshima Toshihisa and Yoshimune Kazuaki

った.カラムに充填した樹脂にTris-HCl を流 して平衡化を行った.酵素液を注ぎ樹脂に StHSDH を吸着させた.吸着後,カラムに Tris-HClを流すことで非吸着タンパク質を除 去した.カラムをTris-HCl で洗浄した後,各 濃度の NaClを加えたTris-HClをカラムに順 次流すことで未成熟 StHSDH を溶出させた. また,アポ酵素(NADPが添加していない未成 熟酵素)を得るためにBlue-Sepharose樹脂を用 いたアフィニティークロマトグラフィーを行 った.Blue-Sepharose樹脂にはアデニル基に 似たリガンドがあるためNADPを持たない未 成熟酵素をカラムに結合させ,その後に塩を加 えたバッファー(Tris-HCl (pH8.0))で溶出した.

酵素活性測定は分光光度計で行った.ホモセ リン存在下,NADからNADHの30°Cでの変換 速度を340 nmの吸光度測定で活性測定した. 活性測定後,作成した検量線を用いて反応速度 を算出した.その後,Lineweaver-Burk plot を用いて酵素の動力学的パラメータである V_{max} , K_m の算出を行った.また,酵素の協同 性の確認としてHill plotによってHill 係数を 算出し,比較を行った.阻害作用が見られた場 合にはLineweaver-Burk plot を用いて阻害 形式を確認後,Morrisonの式を用いて見かけ の阻害定数 K_i を算出した.精製タンパク質の 純度はSDS-PAGEで確認した.

結晶化はハンギンクドロップ法(蒸気拡散 法)を用いた.形の良い結晶を高エネルギー加 速器研究機構(KEK)に試料として送り,X線回 折像を得た.X線構造解析は配列のみが示され ている2次元的なデータであるため,結晶構造 解析ソフトであるCCP4によって3次元的デー タに変換した.その後,StHSD を参照しなが ら分子置換法により立体構造モデルを作成し た.

3. 実験結果,まとめ

結晶構造解析により, Blue-Sepharose樹脂 で精製した未成熟酵素はアポ酵素(NADPが添 加していない未成熟酵素)であることが分かっ た.この未成熟アポ酵素は70℃で2時間の熱処 理により,約2倍活性化した.基質結合領域か ら186番目のグルタミン酸残基の位置が未成 熟酵素よりも熱成熟酵素のほうが開いた位置 にあることが分かった(図1).基質が結合した とき,186番目のグルタミン酸残基は基質結合 によって38番目のアルギニン残基と水素結合 を形成して蓋をするような形となる.基質結合 領域が相対的に開いた結果,基質のターンオー バーがされやすくなり活性化につながったと 考えている. ターンオーバーがされやすくなっ たということは基質が結合して離れる動作が スムーズになり, 結果として活性が上昇したと 考えている.

て,もう片方のサブユニットを灰色で表した.

基質結合による構造変化は未成熟酵素でも 熱成熟酵素でも基質結合領域である146~225 番目のアミノ酸残基で起こっていた.その中で も特に160~190番目のアミノ酸残基で変化し ていた.160~190番目のアミノ酸残基は基質結 合領域の入り口に位置するアミノ酸で,熱成熟 酵素のほうが基質結合領域が大きく開いた構 造となったことが分かった.また未成熟酵素よ りも熱成熟酵素の構造変化が大きいことが分 かった.

未成熟酵素は熱成熟酵素より基質結合によ る構造変化が小さいためターンオーバーが非 効率に行われ,結果として活性が低いというこ とが分かった.これは加熱によって疎水性相互 作用が増加して,温度安定性が強化されたと考 えている.

参考文献

- Mamounis, K. *et al.*, J. Biol. Chem., 2020, 295, 6472-6481
- Lázaro, M. et al., Commun. Biol., 2021, 684, 1-8
- Ayan, E. *et al.*, Commun. Biol., **2022**, *73*, 1-13
- 4) Ogata, K. et al., Sci. Rep., 2018, 5749, 1-8
- 5) Kubota, T. et al. , Commun. Biol., **2022**, *704*, 1-7