○1 日大・生産工,2 東大・農,3 三菱ガス化学(株),4 JASRI 辻本 桜¹, 大村 拓², 前原 晃³, 加部 泰三⁴, 髙橋 大輔¹, 岩田 忠久²,山田 和典¹

1. 緒言

生体吸収性高分子は、以前より医療分野にお いて研究がされており、ドラッグデリバリーシ ステムや手術用縫合糸に使用されてきたり。生 体吸収性医療材料は、除去手術を必要としない ことから、患者の負担を軽減できる利点がある 2)。そのため、生体吸収性医療材料の開発が進 められ、現在ポリヒドロキシアルカン酸 (PHA)、ポリグリコール酸 (PGA) やポリ乳酸 (PLLA) などが実用化されている。しかし、こ れらの手術用縫合糸は、柔軟性に乏しいため、 結び目の安定性が悪く、摩擦係数が大きいため、 生体組織が引き切られるような感覚になるな どの欠点があった3)。これまで、心臓や関節な ど、可動を必要とする箇所には柔軟性がある非 生体吸収性高分子で作られた縫合糸が使用さ れてきた4)。生体吸収性高分子の中でも、PHA の一種であるポリ[(R)-3-ヒドロキシブチレー ト] (P(3HB))は、糖や植物油を原料に、微生物 体内で作られる、環境にやさしいプラスチック としても注目されている。しかし、P(3HB)は、 PGAやPLLAと同様に、強度は強いが硬くて柔 軟でないことが医療材料として欠点であった。 その性質を改善する目的で、共重合体化による 柔軟性の付与が試みられてきた。PHA共重合体 の一種である、ポリ[(R)-3-ヒドロキシブチレー ト-co-4-ヒドロキシブチレート] (Fig. 1, P(3HBco-4HB))は、生体吸収性や強くてしなやかな特 徴を有することが報告されているウ。そのため、 P(3HB-co-4HB)を用いて繊維を作製すること で、従来の非生体吸収性縫合糸の代替にできる と考えられる。

さらに、一本の繊維内部が多孔質であれば、 内部に薬剤を含侵させ、分解とともに薬剤が 徐放されるという薬剤徐放性や、結紮部(結 び目)が小さくなるという利点が期待でき、

 $\begin{pmatrix} H_3C & H & 0 \\ 0 & C & C \\ H_2 & H_2 \\$

Fig. 1. Chemical structure of P(3HB-co-4HB).

高機能な縫合糸へ展開できると考えた。本研 究では、PHAの繊維内部を多孔質にし、高強 度繊維を作製する方法として開発された微結 晶核延伸法^のにより、P(3HB-co-4HB)から伸縮 性を有する生体吸収性のポーラス繊維を作製 し、各繊維に対して走査型電子顕微鏡 (SEM) 観察及び引張試験、X線解析により高次構造 を評価した。さらに、医療材料としての展開 を目指すため、作製した繊維に対して酵素に よる分解性を評価した。

2.実験方法

2-1. ポーラス繊維の作製: P(3HB-co-16 mol%-4HB)は三菱ガス化学から提供されたものを使用した。重量平均分子量約60万のP(3HB-co-16 mol%-4HB)を170°Cで溶融紡糸し、氷浴中(4°C)で巻き取ることで非晶質繊維を得た。次に、4°Cで0~72時間保冷して微結晶核を形成させ、その後繊維を室温で延伸(最大延伸倍率: $\lambda=12$)することで延伸繊維を得た。なお、引張試験、走査型電子顕微鏡(SEM)により作製したポーラス繊維の物性評価、及び断面観察を行った。

2-2. ポーラス繊維の高次構造解析:大型放射光 施設 (SPring-8, BL03XU) にて、伸縮試験を行 いながら広角X線回折 (WAXD) および小角X 線散乱 (SAXS) をリアルタイム同時測定する ことにより伸縮時の高次構造を解析した。

2-3.<u>P(3HB-co-4HB)繊維の酵素分解</u>: *Ralstonia pikettii* T1 由来の PHB 分解酵素を使用し、 37 ℃でIC時間0 h, 24 h, 48 h,72 hの繊維の分解 速度を評価した。

3.実験結果・考察

3-1. <u>伸縮性ポーラス繊維の形態と物性</u>:微結晶 核形成時間(IC: isothermal crystallization)を0~72 時間において作製したP(3HB-co-16 mol%-4HB) 繊維の断面を走査型電子顕微鏡 (SEM) で観 察した (Fig. 2(a)~(f))。IC時間が0時間ではポア が観察されなかったが、12時間以降では繊維内 部にポアが観察された。また、微結晶核形成時 間が短いとポアサイズが大きくなるのに対し、 長くなるとポアサイズが小さくなる傾向であ った (24h:11 µm,72h:4.7 µm)。つまり、IC時 間によりポアサイズの制御が可能であること

Higher-Order Structural Analysis of Elastic Porous Fibers from Microbial Polyester and Their enzymatic degradation. Sakura TSUJIMOTO

Fig. 2. Cross-section SEM images of P (3HB-*co*-16 mol%-4HB) elastic porous fiber with isothermal crystallization time (IC) (a)0 h, (b) 6 h, (c) 12 h, (d) 24 h, (e) 48 h, (f) 72 h.

Fig. 3. Hysteresis curves between 8 N (~98 MPa) and 0 N (0 MPa) (a), WAXD patterns of unload and load (b) and (c) SEM images of unloaded and loaded longitudinal sections.

が示唆された。また、引張強度は約200 MPaと 高強度であることがわかった。

3-2. ポーラス繊維の伸縮性:作製した P(3HBco-16 mol%-4HB) 繊維は、約2倍に伸びた後、 応力を開放すると元の状態へ戻るという伸縮 性を有していた (Fig. 3(a))。伸縮性ポーラス繊維 の伸縮時における高次構造について調べた。Fig.3 (b)に伸張前後の 2 次元 WAXD パターンを示す。 得られた繊維の伸張前は、21ヘリックス構造(α 晶)が配向しているピークが観察された。一方で、 伸張後には、α晶の回折に加えて赤道線上の平面 ジグザグ構造 (β晶)の回折が観察された。Fig.3(c) に繊維内部のポアの繊維縦断面 SEM 像を示す。 ポアの形状は繊維の伸縮に伴って変化している ことがわかった。また、伸縮性ポーラス繊維の長 周期は、伸張前が 7.0 nm で、伸張後は 10.4 nm に 変化し、応力を除荷すると 7.0 nm に戻った。こ の長周期の変化率は、約60%伸びに対し、49%の 変化率であった。

以上のことから、長周期の変化が伸縮性に大きく 起因していることが示唆された。

3-3. <u>伸縮性ポーラス繊維の酵素分解性</u>:作製した P(3HB-co-16 mol%-4HB)繊維を用いて、酵素分解性を評価した (Fig. 4)。各繊維において、酵素分解前の繊維表面は平滑であったが、分解

Fig.4. Changes in weight loss with the time of porous fibers as enzymatic degradation.

が進むにつれて繊維表面から凸凹の表面が露 出し、繊維直径が小さくなった。非ポーラス繊 維とポーラス繊維を比較すると、ポーラス繊維 は非ポーラス繊維より速く分解することがわ かった。また、IC 時間の増加に伴って、ポア サイズが小さくなり、P(3HB)分解酵素による 分解速度が増加することがわかった。これはポ アの数が増えると、露出している表面積が増加 することに起因している。つまり、ポーラス繊 維の分解速度はポアサイズによって制御できる ことがわかった。

4.結言

本研究では、微生物産生ポリエステルの一 種である P(3HB-co-16 mol%-4HB)から、微結 晶核延伸法により高強度かつ伸縮性を有した ポーラス繊維の作製に成功した。得られた繊 維の伸縮性については、β晶の発現及び長周期 の変化が繊維の伸縮挙動に起因している。ま た、ポアの数が多いポーラス繊維(IC=72 h)ほど 速く分解したことから、IC 時間により、ポアサ イズ及び分解速度が制御可能であった。 参考文献

- K. Nakano *et al.*, *JACC Cardiovasc. Interv.*, 2, 277–283 (2009).
- 2) S.Vainionpää, P.Rokkanen, and P.Törmälä, *Prog. Polym. Sci.*, **14**, 679–716 (1989).
- T. M. Muffly, J. Boyce, S. L. Kieweg, and A. J. Bonham, *J.Surg.Educ.*,67, 222–226 (2010).
- J.M.G.Paez *et al.*, *Biomaterials*, **15**, 981–984 (1994).
- 5) TH. Ying et al., Biomaterials, 29, 1307-1317 (2008).
- 6) T. Tanaka *et al.*, *Polymer*, **48**, 6145-6151 (2007).