水素燃料電池自動車向け回生失効時のバッテリ電流推定

日大生産工(院)〇小澤 将平* 日大生産工 加藤 修平

1. 緒論

1.1 燃料電池自動車について

走行中に二酸化炭素を排出しない自動車はいくつかある。 その中で搭載した水素燃料と空気中の酸素の化学反応で発 電し,モータ発電機を介してタイヤを回転させる燃料電池自 動車(<u>Fuel Cell Vehicle: FCV</u>)は、地球温暖化などの環境問 題対策として開発が進んでおり、トヨタ自動車の「MIRAI」 や HONDA の「クラリティ」など市販されている。FCV は 同じく二酸化炭素を排出しない電気自動車(<u>Electric Vehicle:</u> EV)と比較して、約 1/10 の約 3 分で水素燃料を充填可能で あることや航続可能距離が長いといったメリットがある。 また、水素ステーション(充填スポット)も4 大都市圏を中 心に約 100 箇所と拡充しており、FCV は今後普及が進むと考 えられる^{(1),(2)}。

1.2 燃料電池自動車の課題点

現在、FCV は実用化されているものの国内販売台数は年 間約 1000 台に留まっており、航続距離(1回の水素充填で 走行可能な距離)がガソリン車と比較し約1/2と短いことが 普及に向けた大きな課題の一つになっている。本研究では FCV構成として各種提案されている中のFig.1(a)に示す構成 ⁽³⁾で検討する。また、Fig. 1(b)に電気自動車(EV)、 Fig. 1(c)にシリーズハイブリッド車 (Series Hybrid Vehicle: SHV)の構成を示す。FCV の蓄電池は SHV と同様に EV に 比べて容量が約 1/10 以下である為、蓄電池が満充電になり やすい。この時、SHV は内熱機関を併せ持つため、エンジ ンブレーキや排気ブレーキにより制動力(車両を減速させ る力)を得られる。しかし、大きなエネルギーバッファを 持たない FCV は回生電力(車両の運動エネルギーを電気エ ネルギーに変換、Fig. 1(b)の Pele を指す)の受け入れ先が無 く、これを回生失効と呼ぶ。このように FCV は、例えば連 続する下り坂にて満充電時にモータ発電機による制動力を 得られないという弱点がある。

1.3 先行研究について

前述の課題点を解決する最も一般的な方法は、巨大な放

電抵抗器を搭載し満充電を防ぐことである。しかし放電抵 抗器は水素燃料体積が約 120 リットルに対して約 60 リット ルと大型で、車両の水素燃料の積載能力等を低下させてい る。

また、他の先行研究として満充電付近になると車両に搭 載された 12 V 系補機(車載エアコン等)の消費電力を増加 させる方法⁽⁴⁾が提案されている。しかし、これは連続した下 り坂などによる回生電力の 1/10 以下程度しか消費できず十 分な効果が得られない。さらに別な先行研究として、モー タ発電機のd軸電流指令値にq軸電流指令値を(各軸電流に ついては後述)加算し、それを新たなd軸電流指令値とする 方法が提案されている⁽⁵⁾。しかし、これはモータ発電機の回 路定数によってはリラクタンストルク成分により回生電力 がかえって増加するため、効果は限定的である。

1.4 本研究の目的

本研究は、水素燃料電池自動車のモータ発電機の回生失 効時における制動力確保を目的とする。具体的には連続す る下り坂での満充電時の回生電力をモータ発電機の損失 (銅損と鉄損)として消費することで制動力を得つつ、最 終的な回生電力をゼロに抑える方法を提案する(以後、提 案法、ゼロ回生電力法と呼ぶ)。この提案法では、先行研究

Battery Current Estimation at Regeneration Failure for Hydrogen Fuel Cell Vehicles Shohei OZAWA, Shuhei KATO

Fig. 2 Overall configuration of the motorgenerator control system

などで用いられていた巨大な放電抵抗器が不要であるため、 そのスペースに水素燃料を追加することで航続距離の延長 が実現できる。しかし、提案法はモータ発電機を加熱する ことで目的を達成するため、モータ発電機の温度上昇が本 研究の鍵となる。以下に提案法の詳細なモータ発電機制御 方法、実車両をスケールダウンした車両模擬実験装置、温 度上昇実験結果、提案法の応用について詳述する。

2. モータ発電機制御理論

2.1 モータ発電機制御システムの全体構成

Fig.2 にモータ発電機制御システムの構成を示す。電流制 御周期(周波数としては十数 kHz)と同期して電流センサ で検出された相電流 iu, ivが A/D コンバータで CPU に取り込 まれる。座標変換に必要な回転位置(回転角度)は、エン コーダ信号より検出され処理される。座標変換や電流制御 演算はすべてソフトウェアで処理され、得られた相電圧指 令値 vu*,vv*,vw*より、タイマを用いてスイッチング信号が生 成される⁽⁶⁾。ここでモータ発電機電流指令値 i_d*,i_g*の決め方

Fig. 3 Motor-generator drive point considering current and voltage RMS

はモータ発電機効率を高めるべく様々な方法が検討されて いる。以下にそれらの方法と提案法について述べる。

2.2 提案するモータ発電機制御方法

Fig.3 に電流・電圧実効値制限を考慮したモータ発電機駆 動点を示す。駆動点は、電流制限円と電圧制限楕円の内側 である必要がある。一般的には高効率にモータ発電機を駆 動するため、原点からの距離が最短になる駆動点 P

(Maximum Torque Per Ampere: MTPA)の軌跡を選択する。 しかし、提案法では回生失効時に必要に応じて回生電力が ゼロになるようにモータ発電機に損失を発生させる。その ため提案法では駆動点Pと同一の制動力(ブレーキ)を得る ために、電流制限円と電圧制限楕円に最も近くなる駆動点 T_1 または T_2 を選択する。

3. 車両模擬実験装置

Table 1 に本研究で定量的に実験検討するモータ発電機 (永久磁石モータ)の諸元を示す。Fig. 4 に車両模擬実験装 置の全体図を示す。Fig. 4 は左からモータ発電機、トルク検 出器、下り坂模擬原動機、エンコーダであり、これらは同 一軸上に接続されている。制動力はトルク検出器より測定 している。実車両のモータ出力は 100 kW クラスだが、実験 室レベルでは限度があるため2kWにスケールダウンしたモ ータ発電機を使用している。

Rated speed	Ν	3000 rpm
Rated Power	W	2.0 kW
Rated Current	Ι	12.7 A
Pole pair	P _n	4
Armature resistor	$R_{\rm a}$	0.2 Ω
interlinkage magnetic flux	Ψ _a	1.3 Wb
d-axis Inductance	L _d	2.0 mH
q-axis Inductance	La	2.0 mH

Table 1 Specifications of the target motor generator

Fig. 4 Experimental setup for scale downed fuel cell vehicle motor generator

4. ゼロ回生電力実験結果と温度上昇

4.1 箱根峠下りブレーキ発生頻度実測

Fig. 5 に実際に箱根峠(下り坂)を走行し、実測したブレ ーキ発生頻度を実験装置レベルにスケールダウンしたもの を示す。同図のスケールダウンは実験の都合上、実測した 箱根峠ブレーキ発生頻度を4つの制動力で代表させたグラフ である。このとき各制動力での発生時間は、4 つの制動力に 代表させる前後でエネルギーが等価となるように求めてい る。同図より、制動力 360 W 以下の発生頻度が全体の 92% を占めていることがわかる。

4.2 ゼロ回生電力実験

Fig.6 に回転速度 3000 rpm における蓄電池の電力 (Fig. 1(b)の Pele) と機械軸の動力 (Fig. 1 (b)の Pmech) をそれぞれ 入出力とする入出力特性の実験結果を示す。同図の正値は 機械軸(縦軸)であれば制動力、蓄電池(横軸)であれば放電 を意味し、負値はそれぞれ加速力、充電を意味する。つま り提案法は縦軸上の点(蓄電池への回生電力がゼロ)を利 用する。Fig.6 より、原点つまりゼロ回生電力時にモータ発 電機電流値を増加させるほど制動力も増加していることが わかる。3000 rpm 時の最大制動力は約 360 W となった。ま た、Fig.7 に各モータ発電機電流値におけるゼロ回生電力時 の制動力特性を示す。同図より、各回転速度ともにモータ 発電機電流により制動力が増加していることがわかる。モ ータ発電機電流 16A(定格電流の 125%)における制動力 (約360W)は、前述したブレーキ発生頻度の全体92%を確 保できる。125%のモータ発電機電流が許容できるかどうか が鍵となるため、以下で温度上昇を検証する。

Fig. 5 Braking power distribution at Hakone downhill on the scale downed motor generator

4.3 ゼロ回生電力運転時の温度上昇実験結果

提案法で鍵となるモータ発電機の温度上昇を検証するため、モータ発電機の電機子鉄心に熱電対を取り付けた。提 案法と 2.2 節で述べた一般的な高効率運転法とで温度上昇を 相対比較することで提案法の有効性を検証する。まず Fig. 8 に提案法において Fig. 5 に示した箱根峠の各制動力と各制動 時間でのゼロ回生電力時の温度上昇を示す。同図より各制 動時間の合計約 15 分間の箱根峠下り坂で合計約 63℃上昇し ていることがわかる。

次に Fig.9 に高効率運転方法(MTPA) にて定格電力動作 時(2.0 kW)の温度上昇の結果を示す。同図より MTPA は、 提案法と同程度またはそれ以上の温度上昇となっているこ

Battery power Pele [W]

Fig. 6 Input-output characteristics between the battery and the mechanical shaft at 3000 rpm

Fig. 7 Braking power at zero regenerative power condition with each motor generator speed

とが確認できる。よって、モータ発電機を意図的に加熱し 電力消費する提案法は代表的な下り坂である箱根峠におい て過度な温度上昇とならず、有効性を確認できた。

5. モータ電流進角の調整の自動化

5.1 バッテリー電流の計測の問題点

提案法では、蓄電池への回生電力がゼロになるような駆動点で動作させる。これにはバッテリー電流の計測が必要になるが、ゼロ付近のバッテリー電流を正確に計測し、それを制御に利用することは困難である。そこで、電流センサを用いない以下の方法でバッテリー電流の測定を試みる。 5.2 電圧指令値を用いたバッテリー電流平均値の推定実験

モータ電流と電圧指令値からバッテリー電流平均値を復 元する手法を用いる。バッテリー電流の推定は、式(1)~ (5)に表すことができる。Fig.10に推定実験結果を示す。

Fig. 8 Temperature rise during zero regenerative power

Fig. 9 Temperature rise during 2.0 kW output driving by ordinary high efficiency method

 $\boldsymbol{m}_{\rm u} = \boldsymbol{\nu}_{\rm u}^* / (\boldsymbol{V}_{\rm dc}/2) \tag{1}$

$$T_{\rm p-on_u} = 1 + m_{\rm u}/2$$
 (2)

- $T_{\rm u} = T_{\rm p-on_{-}u} T_{\rm d} \tag{3}$
- $idc_u = i_u \times T_u \tag{4}$
- $i_{\rm dc \ average} = i_{\rm dc \ u} + i_{\rm dc \ v} + i_{\rm dc \ w} \tag{5}$

提案法では電機子電流が大きくなるにつれて推定値の誤差 が大きくなっている(方法 1)。この誤差の要因として、電 圧指令値と電流値との同時性がないことが考えられる。電 圧指令値が実際の値に反映されるまで1キャリア周期ほど の時間差がある。方法2として、1キャリア周期分過去の電 圧指令値を用いたところ上記が改善された。また、その他 の誤差要因として、インバータ DC 電流(キャパシタ含まな い)の包絡線が1周期に6回急激に変化する区間でも推定処 理していたことが考えられる。更なる推定精度向上のため、 今後はこの区間を除外した推定を検討する。

Fig. 10 Error between estimated value and measured

今後普及が期待されている FCV のブレーキ性能の弱点を 克服するモータ発電機制御方法を提案した。温度上昇とバ ッテリー電流の推定について実験的に検討した。推定処理 の精度向上が今後の課題である。

参考文献

(1)広瀬雄彦:「持続可能な社会に向けての新たな挑戦―燃料 電池車の現状と未来」, Vol.21,No.7, pp.64-79 (2016)
(2) 新エネルギー・産業技術総合開発機構:「NEDO 水素エネ ルギー自書」,ISBN: 978-4-526-07356-4, (2015)
(3) 齋藤拓,他:「燃料電池システム」,特許公報 P201798061A
(4)山口:「ハイブリッド自動車」,特許公報 P2003-264904A
(5)大久保:「電気自動車の回生制御装置」,特開 P2003-259505A (2003)