日大生産工 〇波場 泰昭, 荒巻 光利

1. まえがき

負イオンを生成する装置は負イオン源と呼 ばれ,負イオン源から引き出されたビームは負 イオンビームと呼ばれる。高い電流密度(>100 A/m²)の負イオンビームを生成するためには, 負イオン源内の放電プラズマ領域で生成され る負イオン(体積生成負イオン)に加えて,セ シウムが添加された初段の電極(プラズマ電極) の表面で生成される負イオン(表面生成負イオ ン)が必要となる。放電プラズマ領域にセシウ ムスパッタを行うことができる負イオン源は セシウム添加型負イオン源と呼ばれ,がん治療, 素粒子実験,質量分析,核融合発電などに広く 応用されている。

セシウム添加型負イオン源の開発で最も重 要な課題の一つは,ビーム集束性を格段に向上 させることである。核融合発電の実用化に向け て,良好な集束性を有する負イオンビーム(発 散角3-7 mrad) が要請されているが, 国際プ ロジェクトであるITER関連の負イオン源開発 では、ビーム発散角14-16 mradの達成に留ま っている1)。負イオンビームの集束を困難にし ている要因の一つは, 負イオンビームの引出領 域が,主たる負イオン生成領域と近接している ことである。Fig. 1に示すように、体積生成負 イオンは、プラズマ電極孔の中央領域から引き 出されると考えられている。一方, 表面生成負 イオンには、プラズマ電極孔縁部から直接引き 出される成分とプラズマ領域を経由した後に 孔中央領域から引き出される成分とが混在す ることが示唆されている²⁾。また, 負イオン源

には、負イオンが引き出されるのと同時に引き 出される電子を除去するための磁場(電子偏向 磁場)が必須で、これも負イオンビームの集束 性を劣化させる要因となる。負イオンビームが 空間的に非対称な構造を有することは実験的 に明らかにされており、上記の負イオン源特有 の性質が影響していると考えられている³。

講演者はこれまでに,核融合科学研究所の負 イオン源から引き出されたビームの位相空間 構造計測を行ってきた。単一の負イオンビーム には複数の速度分布成分が内在しており,静電 レンズ効果に依存して,各成分が位相空間上で 大きく変動することが明らかにされた4。しか し、各成分の起源は未解明の課題として残され ている。最近の研究では、Fig.2に示すような それぞれの速度分布成分の全貌に基づき,各成 分の含有率を実験的に評価する手法を提示し た5。含有率は、ビーム引出に至るまでの過程 で決まり、プラズマ電極より下流に位置するビ ーム輸送過程では変化しない。したがって,ビ ーム引出に至るまでの過程で決まるパラメー タを走査することで,各成分の起源が同定され る可能性が大いにある。

Fig.2 セシウム添加型の負イオン源から 引き出されたビームを構成する複数の速度 分布成分

2. 実験結果および検討

Setup of a compact negative ion source toward controlling beam divergence of surface produced negative ions

Yasuaki HABA, and Mitsutoshi ARAMAKI

本研究では,表面生成負イオンを起源とする ビーム成分の集束特性を速度分布関数に基づ いて実験的に評価するために,生産工学研究所 でセシウム添加型の負イオンビーム実験装置 を構築する。当該装置は、単孔から引き出され た負イオンビームの速度分布を高い分解能で 実験的に評価するために設計された。Fig.3に 示すような, 負イオン源内で純水素放電プラズ マを生成し、生成された負イオンを静電的に加 速させてビームとして引き出す。ビームライン 上に速度分布情報を取得するための計測器を 取り付ける。講演者は先行研究で角度分解能 2.4 mradの位相空間構造計測器を用いて負イ オンビームの計測を行ってきたが、本研究で新 たに開発するビーム計測器はより高い角度分 解能(0.1-1 mrad)を実現する。本講演では, 当該装置の開発状況を報告するとともに,本研 究で遂行する今後の計画について紹介する。

Fig.3 生産工学研究所で開発中の負イオ ンビーム実験装置

3. 提案手法

負イオンビームに内在する複数の速度分布 成分の起源を同定するために,本研究では以下 に示す三つの段階で構成されたビーム計測実 験を提案する。第一に、負イオン源内で純水素 放電プラズマを生成し, セシウムフリーの状態 で、体積生成を起源とする負イオンのみで構成 されたビームを引き出す。これにより、体積生 成負イオンの速度分布関数の実験的な評価が 可能となる。第二に、 負イオン源内でセシウム スパッタを行い, 体積生成を起源とする負イオ ンと表面生成を起源とする負イオンとから構 成されたビームを引き出す。これにより, 負イ オンの生成起源と速度分布関数との関係を実 験的に評価する。 第三に, プラズマ電極孔の幾 何構造を変化させて, ビームを引き出す。 プラ ズマ電極孔の幾何構造がビーム発散角に与え る影響を調査した先行研究はなく,本研究が初 の試みである。

4. 実験方法および測定方法

ビーム速度分布の計測方法をFig.4に示す。 当該計測器は、Ta製ピンホールアレイとカプ トン箔で構成される。各ピンホールを通過した ビーム成分が一定距離Lだけ走行した後にカプ トン箔に入射されることで、箔上にビーム照射 痕が記録される。各ピンホールの位置 (*x_{mn}, y_{mn}*)に対する各照射痕の位置(*X_{mn}, Y_{mn}*) に基づき、ビーム径方向の速度分布が次式で評 価される。

Fig.4 ビーム速度分布の計測方法

5. まとめ

生産工学研究所で,負イオンビーム集束性の 向上に貢献する装置を開発している。本講演で は、当該装置の開発状況と、今後の研究計画に ついて紹介する。

参考文献

- U. Fantz et al., "Negative Hydrogen Ion Sources for Fusion: From Plasma Generation to Beam Properties", *Frontiers in Physics*, 9, 709651 (2021)
- S. Mochalskyy et al., "Beam formation in CERNs cesiated surfaces and volume H- ion sources", New J. Phys., 18 085011 (2016)
- 3) A. Hurlbatt et al., "First direct comparison of whole beam and single beamlet divergences in a negative ion source with simultaneous BES and CFC tile calorimetry measurements", *AIP Advances*, **11**, 025330 (2021)
- 4) Y. Haba et al., "Characterisation of negative ion beam focusing based on phase space structure", New J. Phys., 22, 023017 (2020)
- 5) Y. Haba et al., "Abundance ratio of multiple velocity distribution components in a single negative ion

beamlet produced by a cesium-seeded negative ion source", *AIP Advances*, **12**, 035223 (2022)