単気筒直噴ガソリンエンジン機関からの排出微粒子特性と筒内 可視化の同時計測

日大生産工(院) ○横井 啓吾 千葉大 窪山 達也 日大生産工 秋濱 一弘 山﨑 博司 今村 宰

1. まえがき

自動車の低燃費化が進められ、燃費が良く ディーゼルエンジンよりも低コストな直接噴 射式ガソリンエンジンが普及している.しか しながら、直噴ガソリンエンジンでは粒子状 物質(PM: Particulate Matter)の排出が課題とな っている.欧州ではすでに Particulate Number (PN)の規制が厳格化し、日本でも2024年末ま でに PN 規制開始が検討されている¹⁰ことか ら、PM/PN 抑制技術の開発が求められる²⁰. しかし、微粒子生成過程を実験的手法のみで 解析することは難しく、数値シミュレーショ ンの活用が不可欠である.そこで、現在では 直噴ガソリンエンジンの排出微粒子の予測モ デルの研究が進められており、実機での検証 データが必要となる.

既報³⁴⁾では低温環境下など,様々な環境下 を模擬した PM/PN の計測に加えてエンジン 筒内の可視化を可能とする新エンジン計測シ ステムの構築を行った.そこで今回はエンジ ン筒内の燃焼状態と排出微粒子特性の関係を 明らかにするためにエンジン筒内可視化と微 粒子特性の同時計測を行った.

2. 供試エンジン及び装置概要

2.1 エンジン計測システム

本研究で用いたエンジンの主要諸元を表1 に示す.ボア径は79.7mm,ストローク81.1mm, 排気量404cm³であり,直列4気筒の4サイク ル・直噴ガソリンエンジンを用いた.リア側 の1気筒のみを使用し,単気筒の試験用エン ジンとしている. 圧縮比は 11.5 で,計算の検 証用データを取得するため,量産型ピストン から数値シミュレーションが容易な表面が平 面であるフラットピストンを使用している.

表1 エンジン諸元

Engine type	Single cylinder
Displacement	404.6cm ³
Bore×Stroke	Φ79.7×81.1mm
Compression ratio	11.5
Type of piston	Flat piston

図1は供試機関,チラー,圧力センサ,熱 接点及び排出ガス計測機など各種装置の概略 図である.排出微粒子計測系は排気管へ取り 付けられており,排出微粒子の粒径分布が計 測可能である.測定にはエンジン排ガス微粒 子測定システム EEPMS (Engine Exhaust Particle Measurement System, model 3095. TSI) を用いた.EEPMS はリアルタイム自排微粒子 解析装置 EEPS (Engine Exhaust Particle Sizer Spectrometer, model 3090. TIS) と EEPS 専用 に開発された排ガスの前処理装置である PTT

(Porous Tube Thermodiluter, model 3098, TSI) から構成されている.シリンダーブロックを 加工しシリンダーライナーに熱電対を設置, 燃焼室壁温の計測を可能にした.さらに様々 な運転環境を模擬するためインタークーラと 燃料ポンプに付属した熱交換器に冷却水を通 し,吸入空気温度と燃料温度を制御する.

Simultaneous Measurement of Emission Particle Characteristics and In-Cylinder Visualization from Single-Cylinder Direct-Injection Gasoline Engines

Keigo YOKOI, Tatsuya KUBOYAMA, Kazuhiro AKIHAMA, Hiroshi YAMASAKI and Osamu IMAMURA

Fig.1 エンジン計測システム概略図

2.2 微粒子(すす)粒径分布と質量濃度の 噴射時期特性と可視化計測

排出微粒子の粒径分布計測に用いたエンジ ン排ガス微粒子測定システムは排ガスの前処 理装置と粒径分布計測装置によって構成され ている. 排ガス前処理装置である PTT (Porous Tube Thermodiluter)は、希釈機構と揮発性成 分除去装置(キャタリティックストリッパ: CS)から構成される.内部構造を図2(TSI社 カタログ参照)に示す. 流路は一次希釈, CS, 二次希釈となり、一次希釈部はサンプル直後 に加熱された希釈空気で希釈し, 露点を下げ る. 150℃に加熱されたサンプルラインを通 過し350℃に加熱されたCSにて揮発成分を 除去する.二次希釈部が EEPS 直前にあり, ここでは常温で希釈される.希釈された排ガ スがリアルタイム自排微粒子解析装置 EEPS に供給される. 概略図を図3(TSI 社カタログ 参照)に示す. EEPS は粒子にプラスの電荷 を持たせ, 電気移動度により分級し, 多段に 配置されたエレクトロメータにて検出する.

エンジン筒内の可視化はシリンダヘッドに 可視化カメラ用と照明用の2ヶ所の穴を加工 し、サファイアガラス窓を取り付けハイスピ ードカメラにて撮影を行った.撮影にはハイ スピードカメラ (FASTCAM Nova S series Photoron) とエンドスコープ (88370AX,

KARLSTORZ), 光源には可視化用レーザ照明 (Cavilux HF, CAVITAR)を使用した.可視 化装置及びシリンダヘッドの断面図と共に図 4に示す.また,エンジンを外部・リア側か ら撮影したものを図5,シリンダヘッドを内 部から撮影したものを図6に示す.両画像と も破線内左が可視化ガラス用窓取り付け位置, 右が照明ガラス用窓取り付け位置となる.

Fig.4 可視化装置及びシリンダヘッド断面図

Fig.5 筒内可視化用ガラス取り付け加工部

Fig.6 シリンダ内部撮影図

3. 実験方法および測定方法

実験方法および微粒子質量濃度の噴射時期 特性計測と可視化実験の条件を表2に示す.エ ンジン回転数は1000rpm,吸気温度は30°Cで一 定とした.エンジン負荷(グロス図示平均有効 圧力,IMEP gross)と燃焼位相(CA50:熱発生 率50%時点)をそれぞれ0.5MPa,9deg.ATDCで 一定とした.燃料はPM5(後述)を使用し,空 燃比は14.6とした.エンジンは冷却水温度80°C で暖機し,燃料噴射開始時期(SOI)を吸気工 程前半から圧縮工程後半まで変化(-320,-260, -200,-140,-80deg.ATDC)させ,排出され たすすの粒径分布計測や燃料噴霧の様子,筒内 燃焼の撮影を行った.撮影条件はフレームレー トを10000fps,露光時間は99µsに設定し,撮影 開始のトリガを燃料噴射信号で行った.

本研究で使用した燃料はIso-pentane, Iso-octane, N-heptane, Toluene, 1, 2, 4-Trimethyl benzene の5成分混合サロゲート燃料 (PM5) を使用した.表3に含まれる各成分の体積割合 を示す.PM5は先行研究³⁾によって市販のレ ギュラーガソリンの微粒子排出特性と良い相 関があり,模擬燃料としての妥当性が確認され ている.

表2	実験条件
~ ~ -	

Engine speed	1000 rpm	
Coolant temperature	80 °C	
Intake air temperature	30 °C	
Gross IMEP	0.5 MPa	
CA50	9 deg.ATDC	
Fuel	PM5	
Fuel pressure	20 MPa	
A/F	14.6	
Start of fuel injection	-320, -260, -200, -140,	
(SOI)	-80deg.ATDC	
Frame rate	10000 fps	
Exposure time	99µs	

表3 PM5の成分構成

Component	(Vol.%in fuel)
Iso-Pentane	45
Iso-octane	20
n-heptane	10
Toluene	10
1, 2, 4 Trimethyl benzene	15

4. 実験結果および検討

4.1 可視化結果

図7に燃料噴射開始時期を変化させた時の 撮影時期10deg.ATDCにおける燃焼状態の変 化を示す.-260 deg.ATDC,-200 deg.ATDC, -140deg.ATDC,ではおおむね均一に燃焼して いるが,-80 deg.ATDC(圧縮行程中盤噴射) と-320 deg.ATDC(吸気行程初期噴射)では, すす粒子多量発生の要因であるプール燃焼に よる局所的な輝炎が発生している.これは, ピストンが上死点付近で燃料噴射しているた め,ピストン冠面に液膜が形成されたことが 原因である.

4.2 粒径分布

図8に燃料噴射時期-320deg.ATDC, -260 deg.ATDC, -200 deg.ATDC, -140 deg.ATDC, -80 deg.ATDC, の粒径分布を示す.核形成過程 に対応した10nm付近の粒子とそれらが凝集し た粒子に対応する100nm付近のピークが見ら れる.また,吸気行程前半である-320deg.ATDC と圧縮工程後半である-80 deg.ATDCでは排出 粒子数が多い傾向が確認する事ができる.さら に100nm付近の粒径の大きい粒子の割合も大 きい.可視化結果にもある通りピストン表面で 噴霧された燃料が気化せず液膜が形成され,プ ール燃焼が発生した事によると考えられる.

Fig.7 各燃料噴射時期における筒内可視化画像

Fig.8 各燃料噴射時期における排出粒子の粒径分布

5. まとめ

本研究では直噴ガソリンエンジンの微粒子 生成モデル構築に必要な様々な運転環境下で の実機検証データ収集を可能とするエンジン 計測システムの構築を行った.排出微粒子の 粒径分布の噴射時期特性とエンジン筒内可視 化に関する実験を実施した.

可視化測定装置にてエンジン筒内の燃焼挙 動検証結果を確認できた.また,排出微粒子 特性との同時計測を行うことで筒内の燃焼と 排出された微粒子の関係を確認する事ができた.

6. 今後の展望

3 次元反応流体計算(3D-CFD 計算)が容 易なフラットピストンに加えて,前報³⁾⁴⁾まで の微粒子質量濃度,個数濃度と比較し再現性 を確認する必要がある.そして,冷却水温度 や燃料噴射時期以外にも負荷,点火時期,空 燃比,EGR率,多段噴射,燃料噴射圧力等の 条件を変化させ,データベース構築を目指す. さらに現在構築中であるピストン表面温度計 測も追加する.これにより,数値シミュレー ションに不可欠な境界条件である,壁面温度 計測が可能となり,より高精度な計算の実現 が期待されている.

参考文献

 中央環境審議会,今後の自動車排ガス低 減対策のあり方について(第十四次答 申),(2020)

<u>http://www.env.go.jp/air/mat01 92.pdf</u> (参照 2021-10-07)

- 秋濱一弘, 粒子状物質 (PM):自動車排 出ガス規制と PM 生成モデリングの必要 性-直噴ガソリンエンジン/乗用車を中心 に-, 日本燃焼学会誌, Vol.59, No.87, pp. 49-54, 2017.
- 3) 有川純一,金尚明,窪山達也,森吉泰生, 橋本淳,小橋好充,秋濱一弘:サロゲート燃料を用いたガソリン直噴エンジンの微粒子排 出特性に関する研究 第1報-負荷と空燃比 が微粒子排出特性に及ぼす影響-,第31 回内燃機関シンポジウム,2020.11.16-18
- 4) 金尚明,窪山達也,森吉泰生,有川純一, 秋濱一弘,橋本淳,小橋好充:サロゲート燃料を用いたガソリン直噴エンジンの微粒子排 出特性に関する研究第2報-負荷と空燃比が微粒子排出特性に及ぼす影響-,第31 回内燃機関シンポジウム,2020.11.16-18