新規 Mg-Al 合金粒子を適用した固体推進薬の基礎燃焼特性

日大生産工 o松本 幸太郎

1. 緒言

固体ロケット推進システムは、ロケットモー タ内部で固体推進薬を燃焼させ,燃焼ガスをノ ズルから排出させることで推力を得るシステ ムである.現行の固体推進薬には、過塩素酸ア ンモニウム(AP)を主成分としたAP系コンポジ ット推進薬が用いられている. AP粒子は酸化 剤であり、その他に金属燃料としてAI粒子、バ インダとして末端水酸基ポリブタジエン (HTPB)が適用される. 金属燃料であるAI粒子 は、固体ロケットの推進性能である比推力(Isp) の増強に寄与する.また,Alは他成分と比較し て高密度であり,固体推進薬の密度を増大させ る. 衛星輸送能力への感度が高い上段ロケット モータでは、AI粒子の混合比は20 wt%以上とな り,固体推進薬の高密度・高比推力化が行われ ている.

しかしながら, Al粒子の混合による問題点も 存在する.代表的な問題点は,固体推進薬燃焼 表面におけるAl粒子の凝集及び集塊による粒 子径の増大に起因する推進性能の低下である. Figure 1に示すように,燃焼表面において集塊 したAl粒子は,初期粒子径の数倍から数十倍の 大きさとなる.これらは,ロケットモータ内部 における限られた滞留時間で燃焼を完結させ ることが難しい.特にキックモータや上段ロケ ットのような小型モータでは滞留時間が短い ため,集塊粒子が燃焼を完結することが出来ず に排出されてしまう.

Fig.1 Schematic of the Al particle agglomeration on the burning surface.

すなわち,上段ステージの固体ロケットは理論 推進性能を発揮することが困難となる.このた め,AI粒子の集塊に依る推進性能の低下は解決 しなければならない重要な課題である.その他 の問題点として,集塊Al粒子の一部がロケット モータ内部に残留し構造重量の増大を引き起 こすこと,モータ内部やノズル壁に付着し構造 材料に甚大な熱負荷を与えることが挙げられ る.上述のように,Al粒子の集塊は固体ロケッ トの推進性能を低下させる大きな要因となる ため,集塊特性の把握や抑制について多くの研 究者によって研究されている.特に燃焼表面に おける集塊の可視化や集塊粒子径計測結果が 多く報告されており¹⁻⁰,これらの研究成果を元 に固体ロケットの最適設計が検討される.

本研究では,既存の技術を用いた比較的低コ ストかつ簡易な集塊抑制手法であるMg-Al粒 子の適用に着目した. 固体推進薬中の全てのAl 粒子をMg-Al粒子に置き換えた固体推進薬に 関する研究は多く行われており,適用によって 集塊抑制や燃焼速度の増大が報告されている6-⁷⁾. 一方で, Mg-Al粒子適用のデメリットとして, 固体推進薬製造性の低下が挙げられる. Mg-Al 粒子はAI粒子と比較して密度が小さく, 粒子形 状も非球形の破砕品が主流であるため,推進薬 スラリーの粘度が増大してしまう. 製造性を維 持するためには固体推進薬中の粉体成分を減 少させる必要があり,結果として推進性能が低 下してしまう可能性がある.また,Mgの燃焼 熱はAlと比較して小さいことから、多量のMg 成分混合は理論推進性能を低下させてしまい, 集塊抑制効果による推進性能向上を打ち消し てしまう可能性がある.

上述のMg-Al粒子適用に関する問題を解決 するため、新たにMg成分比を調整した球形 Mg-Al粒子を調製した.本研究では、この新規 粒子を適用した固体推進薬の基礎燃焼特性と して、最も重要なパラメータである燃焼速度を 実験的に取得した.

2. 実験方法

本研究では,実用組成と同等の固体推進薬を 調製した(Table 1).

Table 1 Composition of propellants. [wt%]				
Sample	AP	HTPB	Metal	
H12	68	12	20	
H14	68	14	18	

Combustion Characteristics of Solid Propellant using Mg-Al Particles

Kotaro MATSUMOTO

金属粒子には平均粒子径5 µmのAl粒子及び Mg-Al粒子(Al: Mg = 90.7:9.3 wt%)を用いた.

これらの粒子は球形粒子である.また,従来品 との比較として,非球形Mg-Al粒子(Al:Mg = 50:50 wt%,平均粒子径12.9 μm)を用いた.な お,従来品を用いた固体推進薬は,Mg成分比 がAl粒子に対して9.3 wt%となるように調製し た.調製した固体推進薬の燃焼速度は,Fig.2に 示すストランドバーナ燃焼装置を用いて測定 した.

Fig.2 Experimental apparatus.

ストランドバーナ内部は所定の圧力で燃焼す るように窒素ガスで1-5 MPaに加圧した. 固体 推進薬の着火は,ニクロム線(線径0.2 mm)の抵 抗加熱により行った. 固体推進薬には高さ約10 mm間隔でヒューズ線が通されており,これら は燃焼が進むにつれて切断する. ヒューズ線を 回路に接続し,切断時の電圧降下と線間距離の 関係から燃焼速度を取得した. 固体推進薬の燃 焼速度の整理には,以下に示すVieilleの式を用 いて燃焼速度定数a及び圧力指数nを算出した.

$$r = aP^n \tag{1}$$

3. 実験結果および考察

固体推進薬の基礎燃焼特性として, Fig.2に示 したストランドバーナを用いて加圧下におけ る燃焼速度を取得した.取得した燃焼速度を Vieilleの式で整理した結果をTable 2に示す.

Table 2より, Al粒子を適用した従来の固体推 進薬と比較して, Mg-Al粒子を適用した固体推 進薬は圧力指数が増大することが判った.また, 新規に調製した球形Mg-Al粒子を適用した固 体推進薬の方がより燃焼速度が増大した.さら に, H12及びH14のいずれに対しても球形Mg-Al粒子の適用により燃焼速度定数及び圧力指 数が増大することが判った.この要因の一つと して, 一般的に混合される金属粒子の粒子径が 小さいと燃焼速度が増大することから,非球形 粒子に対して球形粒子の粒子径が小さいこと が影響したと考えられる.

Table 2 Burning rate characteristics.				
Sample	Metal	а	п	
H12	Al	3.71	0.40	
H14	Al	3.58	0.39	
H12_MA1	Mg-Al (spherical)	4.03	0.55	
H14_MA1	Mg-Al (spherical)	3.68	0.55	
H12_MA2	Mg-Al (crushed)	3.45	0.50	

4. 結言

本研究では、新たに調製した球形Mg-Al粒子 を適用した固体推進薬の基礎燃焼特性として、 固体推進薬の最も重要なパラメータである燃 焼速度を実験的に取得した.結果として、球形 Mg-Al粒子を適用した固体推進薬の燃焼速度 は従来品であるAl粒子を適用した固体推進薬 と比較して増大することが判った.今後は、球 形Mg-Al粒子の粒子径を変化させて燃焼速度 を取得し、粒子径と燃焼速度の相関を取得する 計画である.

5. 謝辞

本研究は、日本大学生産工学部 令和3年度 若手研究者支援研究費の助成を受けたもので ある.ここに感謝の意を表する.

参考文献

- H. Habu, T. Shimada, and H. Hasegawa, AIAA Paper 2006-5249 (2006).
- R. Jeenu, K. Pinumalla, and D. Deepak, J. Propuls. Power, 26, 4, 715-723 (2010).
- L. T. DeLuca, L. Galfetti, G. Colombo, F. Maggi, A. Bandera, V. A. Babuk, and V. P. Sinditskii, J. Propuls. Power, 26, 4, 724-733 (2010).
- J. C. Mullen and M. Q. Brewster, J. Propuls. Power, 27, 3, 650-660 (2011).
- F. Maggi, A. Bandera, L. T. DeLuca, V. Thoorens, J. F. Trubert, and T. L. Jackson, Progress in Propulsion Physics, 2, 81-98 (2011)
- L. Liu, W. Ao, Z. Wen, Y. Wang, Y. Long, P. Liu,
 G. He, and L. K. B. Li, Combust. Flame, 238, 111926 (2022).
- H. Habu, K. Hori, Sci. Technol. Energ. Mater., 67, 6 187-192 (2006). (in Japanese).

- 255 -