エマルジョン液滴燃焼時のミクロ爆発における液滴崩壊過程

日大生産工(院) ○高橋 大河 日大生産工 山﨑 博司, 今村 宰, 秋濱 一弘, 高橋 栄一

1. まえがき

エネルギーの大量消費により化石燃料の枯 渇や,燃焼過程で生じる二酸化炭素(CO₂),未燃 炭化水素, 窒素酸化物(NOx)などが一因となる 地球温暖化や大気汚染といった環境問題が深 刻化している. バイオディーゼル燃料(BDF)は カーボンニュートラルの観点から注目されて いるが, 製造過程で発生する脱水によるエネル ギー消費と燃料変質などについての課題があ る. エマルジョン燃料は水を混入させる燃焼手 法であり, BDF 燃料の脱水条件の緩和への一手 法となりうるものと考えられる. エマルジョン 燃料の燃焼過程では二次微粒化が発生するこ とによる環境適合が期待されるが,未解決な点 が多く検討¹⁾がなされている.また,混合燃料 に関する二次微粒化発生に関しては理論的な 検討²⁾もなされているものの,燃料の二次微粒 化における液滴の崩壊過程については十分な 検討がなされているとは言い難い.本研究は二 次微粒過程を検討し,二次微粒化の有効利用す るための燃料条件を見出すことを目途とした ものである. ここでは炭化水素/水エマルジョ ン燃料液滴のミクロ爆発過程における液滴崩 壊を画像処理により検討し,二次微粒化の火炎 等への影響などを定量化するための手法を検 討したので、その結果について報告する.

2. 実験方法および解析方法

実験装置は既往³と同じであり,直径 150µm の石英懸垂線に付着させた初期液滴直径 do=1.4mmについて通常重力下,室温,大気圧, 静止空気中での液滴燃焼で発生する二次微粒 化を Vision Research 社製 Phantom v2512 で 撮影した高速度画像を対象とし,液滴の分裂, 崩壊過程の検討を行った.点火系には小ブタン 炎,供試燃料はベース燃料を n-hexadecane,体 積割合 0.77 とし,純水含有率 0.20 と一定と し,界面活性剤にポリオキシエチレンアルキル エーテル(エマルゲンLS - 110 ,花王(株), HLB = 13.4) 0.03 と一定としたエマルジョン 燃料であり,初期にホモジナイザーで調製し, 実験前にマグネチックスターラで混合,攪拌し たエマルジョン燃料を使用した.

ここではエマルジョン液滴における崩壊画 像の重心位置及び画素値分布を検討したもの である.

Fig.1 に液滴重心の解析手法を示す. 解析対象の画像に二値化処理を行い,輪郭を抽 出する.その抽出した輪郭のモーメントを計算 することで重心の座標を算出した.

Fig.1 崩壊画像の重心算出手法

3. 実験結果および考察

3.1 崩壊画像の重心

Fig.2に崩壊画像の重心の算出結果の例を示 す.図に示したミクロ爆発では初期に液滴下部 で爆発は発生しそれに伴い上部が崩壊してい く形式の崩壊例である.図から初期の下方の崩 壊より重心位置は下方に移動しその後液滴上 方の崩壊に伴い重心位置も移動していく様子 が確認できる.今度の液滴崩壊過程での爆発エ ネルギー算出に必要な外部方向への加速度算 出時の外方向への加速度ベクトルの方向を算 出に有効となると考えられる.一方で,二値化 処理により内部の画素値分布は消去されてい ることから,崩壊領域の重心としては検討を要 するものと考えられる.

Fig.3 に, Fig.2 とは異なる液滴でのミクロ 爆発での液滴崩壊過程の可視化例である.この 例では上方に蒸気の飛散が確認でき,かつ下方 には〇で示した部分で液滴の一部が二次液滴 となり飛散していく様子が確認できる.この場 合には二次液滴は貫通力を有して広い範囲で

Droplet disintegration processes of micro-explosion during emulsion droplet combustion

Taiga TAKAHSHI, Hiroshi YAMASAKI, Osamu IMAMURA, Kazuhiro AKIHAMA and Eiichi TAKAHASHI

Fig2ミクロ爆発の重心位置

の混合促進が期待できる.その効果について一 部で言及はされているものの定量的な効果に ついての考察がなされていない.ここでは二次 液滴の発生状況を把握することを目的として 画素値分布を検討することとした.

Fig.4はFig.2に示したミクロ爆発過程の高 速度画像およびその画素値分布である.画素値 分布は画素値を3次元散布図の上方から描画 であり,液滴像から崩壊過程および崩壊画像の 内部の画素値が捉えられている.これらを用い て様々な形態を有するミクロ爆発での液滴崩 壊過程を検討することにより定量的な分類が 可能になると考えられる.Fig.5はFig.4の①, ⑤の散布図である.図からわかるとおり,画素 値分布は斜面となっている.これは背景光の偏 りによるものであり,上記に述べた内部構造の 定量化においては,その補正が必要である.

4. まとめ

エマルジョン燃料の液滴燃焼時に発生するミ クロ爆発における液滴崩壊過程を定量的に検 討することを目的として,高速度撮影結果につ いて画像処理を行い,検討した.

- 液滴崩壊に合わせて、重心位置の軌跡を追うことにより、ミクロ爆発の重心位置の特定が可能であることを示した。
- 2) 液滴崩壊過程の画素値分布を散布表示することにより、崩壊画像の内部構造の検討が可能であることを示した.一方で背景光などの補正も同時に必要である.

参考文献

- Watanabe H, Harada T, Hoshino K, Matsushita Y, Aoki H and Miura T, JCEJ 41, 1110-1118 (2008)
- Mikami M. et. al, Proc. Comb. Inst. 27, 1993-1941 (1998)

Fig.3 ミクロ爆発過程における二次液滴

(1)

Fig.5 画素値分布における背景光の影響

(5)

 山﨑博司, 今村宰, 古川茂樹, 小幡義彦, 氏 家康成, J. Jpn. Inst. Energy, 93, 127-134,