光ファイバセンサを用いた炭素繊維複合構造材の

ヘルスモニタリングに関する研究

日大生産工(院) 〇大友 愛斗 日大生産工 小山 潔

1. まえがき

近年、構造物や航空機の部材として、2種類 以上の材料から成る炭素繊維複合材が注目さ れている。構造物や航空機を安全に運用してい くために、適切な保全や管理が必要である。従 来の保全方法や管理方法は、定期的に健全性を 確かめる定期メンテナンスや、目視検査などが 挙げられるが、これらの方法にはデメリットが ある。それは、定期メンテナンスは高コストで あり、突発的な損傷によるトラブルに対応でき ない。また、目視検査では、技術者の技量に依 存して損傷の見落としによるトラブルが起こ る場合があると考えられる。そこで、構造物の 健全性を常に監視する構造ヘルスモニタリン グシステムを構築することで、即自的に構造物 や航空機の健全性を確認でき、不具合の予兆を 発見して突発的な故障を防げる場合がある。本 報告では、光ファイバセンシング技術である FBG方式のセンサとニューラルネットワーク (NNC)を用いて、炭素繊維複合材に衝撃が加わ ったときの外部応力の大きさと作用した位置 を評価する基礎的な構造ヘルスモニタリング システムの構築を行った検討結果を報告する。

提案手法

構造ヘルスモニタリングの提案方法として、 FBG 方式の光ファイバセンサと NNC を用い てヘルスモニタリングシステムを構築する。

本報告で用いる FBG は、光ファイバのコア 内部に構築された屈折率変調(回析格子)を形 成したものである。光ファイバの入射光に対し、 グレーティング周期(回析格子の間隔) Λ に合 致するブラッグ波長 λ_B の光のみが反射し、そ れ以外の波長の光は透過する。ブラッグ波長 λ_B を式①に示す。

 $\lambda_{B}=2n\Lambda \cdot \cdot \cdot 1$

式①の n は光ファイバのコアにおける有効屈 折率である。FBG に外部から応力が加わると、 内部のファイバは伸長し、回析格子の間隔が変 化するため、ブラッグ波長の値も変化する。こ のブラッグ波長の変化量を測定することで、外 部応力によるひずみや圧力を計測することが できる。

NNCは機械学習の技法であり、人間の脳の 情報処理ネットワークを単純化したものであ る。本報告では、波形の認識を行うニューラル ネットワークを構築した。学習手法として教師 あり学習を行うため、事前に学習をさせるため の学習用データを用意する。NNCの性能評価 として、評価用データを用意する。

3. 実験方法および測定方法

3.1 試験体

本報告では試験体として、寸法が縦160mm、 横160mm、厚さ1.9mmである炭素繊維プラス チック(CFRP板)を用いて、Fig.1のように2つ のFBGセンサを設けた光ファイバを2本使い、 試験体に固定した。光ファイバはFig.1のよう に、縦100mm、横 100mmの格子状を形成し ているため、座標を0から1の数値を用いて正 規化した。試験体中央の座標は(0.5,0.5)であり、 4つのFBGセンサの座標は、センサ①(0,0.5)、 センサ②(1,0.5)、センサ③(0.5,1)、センサ④ (0.5,0)である。Fig.2に試験体の平面座標を示 す。

Fig.1 試験体と光ファイバセンサの配置

Study on health monitoring of structural materials using optical fiber sensor

Aito OTOMO and Kiyoshi KOYAMA

3.2 CFPR 板への荷重

おもりを自由落下させ、試験体に動的荷重を 加えた。落下させる点は、各 FBG センサ直上 と試験体中央の5か所である。5か所の落下点 で100g 200g のおもりをそれぞれ 11 回ずつ落 下させた。

3.3 NNC による荷重推定

NNC で荷重推定をするにあたり、3.2 で得 られた動荷重波形を用いて荷重推定を行った。 本報告では、Fig.3 に示すように各センサから 得られた波形を入力とし、荷重の位置座標(x,y) と荷重量を推定した。5 か所の落下点で得られ た 10 回分のデータを学習用データとし、5 か 所の落下点で得られた 1 回分のデータを評価 用データとした。

Fig.3 NNC による荷重推定

4. 実験結果および検討

Fig.4 にセンサ①直上に重りを落とした時の センサ①の波形を示す。試験体に衝撃が加わっ た直後、ブラッグ波長に変化が生じ、その後ブ ラッグ波長の変化が収まる。荷重量の値が大き ければブラッグ波長の変化量が大きくなった。

Table.1に、荷重位置推定結果、Table.2に、 荷重量推定結果を示す。Table.1のy_0:Xと y_1:Yはそれぞれ評価用データのx座標とy座標における正解の値を示しており、y´_0と

y´__1はそれぞれ評価用データのx座標とy 座標における推定値を示す。また、Table.2の y:weight(g)は評価用データの荷重量における 正解の値を示しており、y´は評価用データの 荷重量における推定値を示している。

Tab	ole.	何里位直推正結果	

	y_0:X	y_1:Y	y'_0	y'_1	y0の誤差率	y_1の誤差率
(0,0.5)に100gの荷重を加えた時	0	0.5	0.024335	0.471156	2%	3%
(0,0.5)に200gの荷重を加えた時	0	0.5	0.049472	0.553802	5%	5%
(1,0.5)に100gの荷重を加えた時	1	0.5	0.790986	0.488416	21%	1%
(1,0.5)に200gの荷重を加えた時	1	0.5	1.023331	0.532288	2%	3%
(0.5,1)に100gの荷重を加えた時	0.5	1	0.548287	0.904633	5%	10%
(0.5,1)に200gの荷重を加えた時	0.5	1	0.52453	1.114372	2%	11%
(0.5,0)に100gの荷重を加えた時	0.5	0	0.472556	0.065573	3%	7%
(0.5,0)に200gの荷重を加えた時	0.5	0	0.561494	-0.00198	6%	0%
(0.5,0.5)に100gの荷重を加えた時	0.5	0.5	0.65788	0.422575	16%	8%
(0.5,0.5)に200gの荷重を加えた時	0.5	0.5	0.471364	0.4844	3%	2%

Table.2 荷重量推定結果

	y:weight(g)	у'	y の誤差率
(0,0.5)に100gの荷重を加えた時	100	112.6239	13%
(0,0.5)に200gの荷重を加えた時	200	190.4028	5%
(1,0.5)に100gの荷重を加えた時	100	100.6914	1%
(1,0.5)に200gの荷重を加えた時	200	203.6784	2%
(0.5,1)に100gの荷重を加えた時	100	107.7618	8%
(0.5,1)に200gの荷重を加えた時	200	185.9187	7%
(0.5,0)に100gの荷重を加えた時	100	113.7676	14%
(0.5,0)に200gの荷重を加えた時	200	230.6545	15%
(0.5,0.5)に100gの荷重を加えた時	100	116.6483	17%
(0.5,0.5)に200gの荷重を加えた時	200	219.6305	10%

5. まとめ

本報告では、光ファイバセンサとNNCを用 いて、炭素繊維複合材のヘルスモニタリングシ ステムの検討を行った。多くの学習用データを 用意し、NNCを構築することで、荷重位置と 荷重量を推定する基礎的な構造ヘルスモニタ リングシステムを構築することが出来た。

今後の課題として、精度の向上のため、学習 用データを多く採ること、フーリエ解析などを 用いて周波数領域の定量的な値から解析をす ることが課題となる。

参考文献

 吉田隆, CFRPの成形・加工・リサイクル 技術最前線,エヌ・ティー・エス(2015) pp.3-14.