円形 CFT 柱の構造性能に関する実験的研究

- 柱長さによる比較-

日大生産工(院) ○堀 紗友梨 日大生産工 藤本利昭

1. まえがき

鋼管にコンクリートを充填した構造である コンクリート充填鋼管(Concrete Filled Steel Tube, 以下CFTと略称)構造は, 優れた構造性 能を持つことから、CFT柱として超高層建築物 に用いられた事例が多くある。CFT構造は、鋼 管と充填コンクリートの相互拘束効果(コンフ ァインド効果)により軸圧縮耐力・曲げ耐力・変 形能力が増大する。そのため従来使用されてき た鉄骨造や鉄筋コンクリート造に比べても多 くのメリットを有している1)。本研究の対象で あるCFT柱は、一般的に円形・角形断面が用い られるが、断面の径が等しい場合、構造性能が 優れること、納まりが良いことから、角形断面 の採用が一般的である。一方,円形CFT柱は, 意匠上の要求により使用されることが多く,エ ントランスの吹き抜け部など比較的細長い柱 が用いられることが多い。

そこで本研究では、円形CFT柱の実験データ の収集を目的に,部材長さを900mm,1200mm, 1400mm, 1600mmと変化させた一定軸力下の 曲げ実験を行い、構造性能の検討を行った。

実験概要 2.

2.1 試験体概要

表1に試験体概要,図1に試験体図を示す。試 験体は断面径を139.8mm,板厚を4.5mmとし, 柱長さによる比較のため,部材長さを900mm, 1200mm, 1400mm, 1600mmの4種類とした。 軸力比N/N₀(N:載荷軸力, N₀:CFT 柱の軸圧 縮耐力)は0.3に設定した。また、試験体の加力 点と反力点にはプレートを溶接し,試験体を製 作した。

表2に鋼材の材料試験結果を示す。試験体に は一般構造用鋼管STK400材を使用し、材料試 験片は14号B試験片とし、引張実験を行った。 表3にコンクリート調合表を,表4にコンク リートの材料試験結果を示す。試験体のコンク リートは設計基準強度 F_c =30(N/mm²)の普通 コンクリートを用いた。

表1 試験体概要

試験体名称	部材長さ	断面	幅厚比		
	L(mm)	直径	板厚	D/4	
		D(mm)	t(mm)	D/l	
900	900	139.8	4 50		
1200	1200			91.1	
1400	1400		4.00	51.1	
1600	1600				

(b)B-B'断面図

単位:mm

図1 試験体図

表2 鋼材の材料試験結果

NEA HE A TH	降伏強度	引張強度	ヤング係数	伸び率	
	σ_y (N/mm ²)	σ_u (N/mm ²)	E_s (kN/mm ²)	$\mathcal{E}(\%)$	
STK400	384.7	419.0	205	26.1	

表3 コンクリート調合表

		単位質量(kg/m ³)						
	W/C(%)	セメント	水	細骨材		粗骨材	Alta alta	
				山砂	砕砂	6号砕石	他们们	
普通コンクリート	62	315	195	489	335	900	3.31	

```
表4 コンクリートの材料試験結果
```

	設計基準強度	圧縮強度	ヤング係数	材齢	
	F_c (N/mm ²)	σ_B (N/mm ²)	E_c (kN/mm ²)	(日)	
普通コンクリート	30	29.7	29.5	57	

Experimental Study on Structural Performance of Circular CFT Columns Comparison by Column length

Sayuri HORI, Toshiaki FUJIMOTO and Kaito SUKEGAWA

2.2 試験方法

図2に実験に用いた載荷装置および軸力載荷 用フレーム,図3に変位計設置位置を示す。変 位計の①~④は鉛直方向の変位を測定し、⑤, ⑥は試験体材軸方向の変位を測定した。また, 試験体上下面には1軸ゲージを各4枚,試験体 側面には3軸ゲージを各2枚貼り付け各部のひ ずみを測定した。

加力は、軸力載荷用フレームに取り付けた 500kN油圧ジャッキにより試験体に所定の軸 力を作用させ、軸力を一定に保った状態で、 5000kN構造物試験機を使用し実験を行った。

実験は3点曲げとし、試験体両端に取り付け たエンドプレート部を支点として、ダイアフラ ムを模擬した試験体中央部のプレートを介し て加力を行い、部材角が6%に達するまで行っ た。なお、本実験装置では、支点と軸力作用点 が異なるため、軸力と変形による付加曲げモー メント(P-8)が本来より大きく作用する。

3. 実験結果

3.1 実験結果概要

図4に試験体4体の終局耐力曲線,表5に実験 結果一覧を示す。図の縦軸は軸力N,横軸は曲 げモーメントMとしている。図4に示した900, 1200,1400,1600は座屈長さ径比 L_k/D がそ れぞれ6.4,8.6,10.0,11.4となっている。4< $L_k/D \leq 12$ が中柱,12 $< L_k/D$ が長柱とCFT指 針で定義されており,今回の試験体はすべて中 柱となっている。

表中の最大荷重計算値 $_{e}P_{u}$ は,(1)式で図4の 終局耐力曲線より求め,CFTの終局耐力 $_{e}M_{u}$ は 短柱の終局耐力曲線により軸力Nが30%の時 の曲げモーメントMである。

$$_{c}P_{u} = \frac{4 \cdot _{c}M_{u}}{L} \tag{1}$$

最大曲げモーメントの実験値 $_{e}M_{u}$ は軸力に よる付加曲げモーメントを含む値として,実験 で得られた最大荷重 $_{e}P_{u}$ から(2)式を用いて求 めた曲げモーメント $_{e}M_{up}$ と(3)式に示す載荷軸 カNと変位 δ により生じる曲げモーメント $_{e}M_{uN}$ を足し合わせること((4)式)で求めた。

$${}_{e}M_{up} = \frac{{}_{e}P_{u} \cdot L}{4} \tag{2}$$

$$_{e}M_{uN} = N \cdot \delta \tag{3}$$

$${}_{e}M_{u} = {}_{e}M_{up} + {}_{e}M_{uN} \tag{4}$$

ここで、 eM_{up} :最大荷重時の曲げモーメント の実験値、 eM_{uN} :軸力による曲げモーメントの 実験値、N:載荷軸力、 δ :鉛直方向の変位、 eM_u :付加曲げを含む曲げモーメントの実験値 である。

図4 試験体4体の終局耐力曲線

表 5 実験結果一覧

	作用軸力	座屈長さ径比	最大荷重			最大曲げモーメント			部材角		
試験体名称	名称 N(kN)		実験値	計算値	$_{e}P_{u}/_{c}P_{u}$	実験値	計算值	$_{e}M_{u}/_{c}M_{u}$	実験値	補正後	計算値
		$L_k D$	$_{e}P_{u}(kN)$	$_{c}P_{u}(kN)$		$_{e}M_{u}(\mathrm{kN\cdot m})$	$_{c}M_{u}(\mathrm{kN}\cdot\mathrm{m})$		$_{e}R_{u}\left(\% ight)$	$R_{u}(\%)$	$_{c}R_{u}$ (%)
900	336	6.4	181.7	139.2	1.31	43.1	40.0	1.08	2.63	6.09	5.16
1200	336	8.6	119.6	101.0	1.18	39.9	40.0	1.00	2.90	4.37	5.16
1400	336	10.0	101.3	84.0	1.21	40.9	40.0	1.02	3.04	3.67	3.10
1600	336	11.4	85.3	71.0	1.20	43.1	40.0	1.08	3.42	3.63	3.10

3.2 荷重·変位関係

図5に荷重-変位関係を示す。図の縦軸は試験 機による荷重*P*,横軸は変位*δ*とした。変位*δ* は試験体の左右各2本の変位計の値から大きい 変位を示した方の平均値を用いている。図中の □は各試験体の最大荷重点である。

図より最大荷重は、部材長さが 1600<1400<1200<900の順に大きくなった。 表5より、計算値と比較すると1200、1400、 1600では計算値の約1.2倍になり、900が最も 計算値を上回り、約1.3倍になった。最大荷重 時の変位は、1600では δ =16.1mm、1400では δ =12.3mm、1200では δ =9.7mm、900では δ =6.1mmとなり部材長さが長いほど大きい値 になったが、初期剛性は、部材長さが短いほど 高くなった。最大荷重後の耐力低下は、部材長 さが長いほど緩やかになり、1600の耐力低下 が最も小さくなった。

3.3 モーメント・部材角関係

図6に曲げモーメント・部材角関係を示す。図 の縦軸は軸力と荷重による曲げモーメント*M*, 横軸は部材角*R*とした。図中の口は各試験体 の最大曲げモーメント時における部材角を示 している。

最大曲げモーメントは、900と1600は同じ値 で最も大きくなり次に1400、1200の順に大き くなった。900は、他の3体と比べて軸力による 曲げモーメントは小さいが、荷重による曲げモ ーメントが大きくなったため、1400、1200よ り大きくなったと考えられる。1600は試験終 了時の曲げモーメントが最大曲げモーメント になっており、軸力による曲げモーメント になっており、軸力による曲げモーメントが他 の3体に比べて大きくなったためだと考えられ る。計算値と比べると、1200以外の試験体は計 算値を上回った。最大曲げモーメント後の耐力 低下は900では僅かに低下したが、他の試験体 ではほとんど低下しなかった。

最大曲げモーメント時の部材角は,1600で はR=6.01%,1400ではR=3.78%,1200ではR =2.89%,900ではR=2.27%となり部材長さが 長いほど大きくなった。900と1200,1200と 1400の部材角の差は約1%でほとんど同じで あるが,1400と1600の部材角の差は2.2%とな り大きくなった。

3.4 せん断力 部材角関係

図7にせん断力・部材角関係を示す。図の縦 軸はせん断力 Q, 横軸は部材角 R を表してい る。なお, せん断力は, 前述の試験装置による 影響は補正してある。図中の□は各試験体の実 験から得られた最大せん断力点,○は各試験体の限界部材角の点を示している。

図7より,最大せん断力時の部材角は部材長 さが1200<1400<1600<900の順に大きくなり, 1400と1600はほぼ等しくなった。表5より, 補正後の限界部材角を比較すると,900では R_u =6.09%,1200では R_u =4.37%,1400では R_u =3.67%,1600では R_u =3.63%となり部材長さ が短いほど大きくなった。これは図からわかる ように部材長さが短いと耐力低下が緩やかに なり,限界部材角は900が最も大きくなった と考えられる。

-11-

3.5 限界部材角

図 8 に限界部材角の定義図を示す。CFT 部 材の変形能力は、実験における包絡線のせん断 力 Qと部材角 Rの関係を用いて、せん断力が 最大耐力以降で 5%低下した点を限界部材角 $_{e}R_{u}$ (左右の変位計から得られた大きい方の変 位 δ を部材長さ Lの 1/2 で除して求めた値)と して定義して評価される。CFT 柱の限界部材 角 R_{u} は、コンクリート充填鋼管構造設計施工 指針 2 (以下、CFT 指針と略称)に基づき L_{k}/D \leq 30 の柱については、(5)式を用いて求める。

CFT 柱の変形能力は,軸力 Nと水平変位 る により生じる付加曲げモーメントによるせん 断力の低下の影響を含めた形で評価している。

$$_{c}R_{u} = \gamma_{c} \cdot \left(8.8 - 6.7 \frac{N}{N_{0}} - 0.04 \frac{D}{t} - 0.012 \cdot F_{c}\right) / 100$$
 (5)

ここで、 Y_c : 円形断面 CFT 柱の座屈長さ径 比による低減係数($L_k/D \leq 10$ の場合 1.0、 L_k /D > 10の場合 0.6)である。

この式の構成から, 径厚比が大きくなるほど, コンクリート強度が大きくなるほど,軸力比が 大きくなるほど限界部材角が小さくなるとい う CFT 部材の構造特性が考慮されていること がわかる。

一方で(5)式には、柱長さの違いによる限界 部材角への影響は、 $L_k/D > 10$ の CFT 柱に対 して低減係数を乗じる形で評価している。

図8 限界部材角の定義図

表5より,補正後の限界部材角を指針式と比べると1200は0.79%下回った。1400と1600 は低減係数を乗じていない値と比べると下回ったが,低減係数 ye を考慮した値と比べると 指針式を上回った。

図 9 に $R_u/_cR_u$ -座屈長さ径比関係を文献 3) のデータと共に示す。図の $R_u/_cR_u$ の R_u は実験 から得られた補正後の限界部材角、 $_cR_u$ は(5)式 に示す CFT 指針式を用いており、低減係数 Y_e は考慮していない。実線は評価式の低減係数 Y_e を示す。

図 9 より, $L_k/D>10$ である 1600 は $R_u/_cR_u$ =0.70, 1400 は $R_u/_cR_u$ =0.71 となり,指針式 を下回ったが,低減係数によって指針式を上回 り安全側の評価となった。そのため低減係数が 効果的に機能していることがわかる。 $L_k/D \leq$ 10 である 900 は $R_u/_cR_u$ =1.18,となり安全側 の評価となったが,1200 は $R_u/_cR_u$ =0.84 と危 険側の評価となった。既往の研究結果と比べて も同じような結果となった。

図9 R_u/cR_u ・座屈長さ径比関係

4. まとめ

本実験では,柱の長さを900mm, 1200mm,

1400mm, 1600mmと変化させた円形CFT柱 の一定軸力下の曲げ実験を行った。実験から得 られた結果を以下に示す。

- ・最大荷重と初期剛性は、部材長さが短いほど 高くなり、最大荷重時の変位は、部材長さが 長いほど大きい。
- ・最大曲げモーメントは、座屈長さにかかわら ず、実験値は計算値とほぼ一致した。
- ・最大曲げモーメント時の部材角は、部材長さ が長いほど大きい。
- ・限界部材角は、部材長さが短いほど大きくなり、 *L_k*/*D*>10の試験体は低減係数によって 安全側の評価となった。

参考文献

-12 -

- 日本建築学会:コンクリート充填鋼管設計ガイドブック, pp.30-34, 2012
- 日本建築学会:コンクリート充填鋼管設計構造施工指 針,第2版,2008
- 藤本利昭:コンクリート充填鋼管長柱の変形性能評価法,日本構造協会,鋼構造論文集,第11巻第43号, pp.99-105,2004.9