試設計による CES 構造の低層建築物への適用に関する研究

-SRC構造低層建築物を例とした合理的な断面の検討-

1. まえがき

CES構造とは、Concrete Encased Steel構造の 略であり、内蔵鉄骨と繊維補強コンクリート (Fiber Reinforced Concrete:以下FRC)により構 成される新構造システムである。1990年のバブ ル崩壊を境に鉄骨鉄筋コンクリート(Steel Reinforced Concrete:以下SRC)構造の建設棟数 が急激に減少したことを受け、SRC構造は耐震 性に優れていながら設計および施工が他の構 造に比べ複雑であることなどから、同等以上の 耐震性能を得られる新構造システムとして、 CES構造の実用化に向けた研究が行われてき た。そして、それらの技術資料の整備により、 2022年3月に「鉄骨コンクリート(CES)造建物の 性能評価型構造設計指針(案)・同解説」¹⁾(以下 CES指針)が刊行された。

CES指針には中高層建築物の設計例が明示 されているが、低層建築物に対する検討はなさ れていない。しかしながら、CES構造をより一 般的な構造システムとして広く普及させるた めには、低層建築物への適用も目指すべき課題 であると考える。そこで本研究では、文献2) に示されたSRC構造低層建築物の設計例(以下 SRC造設計例)を基に、柱・梁部材をCES構造へ 変更したCES造低層建築物について限界耐力 計算により変形性能の検討を行うことで、CES 構造の低層建築物への適用の可能性および、断 面の合理化の検討を行う。

2. 検討建物詳細

伏図・軸組図および柱・梁断面図を図1に, 建物詳細と柱・梁リストを表1,2に示す。検討 対象とした建物は,2階建てSRC構造の例題建 築物であり,許容応力度計算および略算による 保有水平耐力計算などの検討が行われている。 これまでに文献3)において,SRC造設計例の 柱・梁部材をCES構造へ変更し限界耐力計算の 検討を行い,構造性能についての比較を行った。 寸法の等しいCES部材に変更した結果,ひび割 れ後の剛性および,変形性能が向上することを 確認した。また,CES構造はSRC構造に比べ内

日大生産工(院)	○宇都宮 陸
日大生産工	藤本 利昭

蔵鉄骨断面を大きく確保できることから,部材 断面を縮小化してもSRC構造と同等の耐力を 得られるものと推察した。そこで本研究では, 柱および梁の断面寸法を縮小し同様の検討を 行った。断面は1・2階共通で柱は十字形鉄骨, 梁はH形鉄骨とし, CES指針に準記してかぶり 厚は50mmとした。なお,コンクリートの設計 基準強度についての記載が無いことから,CES 指針の最低強度であるF₆27を採用した。また, X方向,Y方向ともに純ラーメン構造であり, X方向は5.0mの片持ち梁を有する。

表1 建物詳細

建築用途	店舗		
規模	地上2階		
地盤	第1種地盤		
構造概要	CES 構造,独立基礎		

表2 柱・梁リスト

柱	断面(CES)	梁	断面(CES)
$_2C_1$	B×D=800×800	RG1	B×D=400×900
2 .	2H-700×300×13×24		H-800×300×14×26
${}_{1}C_{1}$	F _c 27	${}_{2}G_{1}$	Fc27

Study on application of CES structure to low-rise building by trial design -Examination of rational cross section using SRC structure low-rise building as an example-

Riku UTSUNOMIYA and Toshiaki FUJIMOTO

3. 各限界状態時の応答

3.1. 使用限界状態

CES柱の耐力曲線に、柱の長期および短期作 用応力をプロットし図2に示す。図中のプロッ トは、軸力が最大となるNmax(●)と、曲げモ ーメントが最大となる点Mmax(●)の2点を示 す。CES指針より使用限界状態では、長期荷重 下における部材の過度な変形、ひび割れ、劣化 等が生じないことが求められる。また、建物の 過大な沈下や傾斜が生じないことも要求され る。したがって本研究では、構造解析プログラ ムにより長期・短期作用応力を算定しCES柱の 耐力曲線にプロットすることで、安全性を検討 する。図2より、長期・短期ともにプロットが 耐力曲線内に収まっていることから、作用応力 が許容応力度以下となっており、許容応力度設 計が満足していることを確認した。

3.2. 荷重增分解析

荷重増分解析により得られたCES構造のX方向,Y方向の層せん断力—層間変形角の関係を,SRC造設計例と比較し図3,4に示す。解析は,建物の崩壊もしくは層間変形角が0.02(Rad.)に達した時点で終了した。

図より,柱および梁を縮小化しCES構造へ変 更したことにより,X方向,Y方向いずれも初 期剛性はわずかに低下した。一方,ひび割れ後 の剛性および変形性能は向上した。また,内蔵 鉄骨は十字形鉄骨であることから,荷重方向に よる構造性能の差は小さく,剛性および変形性 能は概ね同様であった。SRC構造ではX方向は 層間変形角が0.01(Rad.)に達した時点で建物が 崩壊したのに対し,CES構造では柱断面を縮小 したが鉄骨断面が大きくなったことにより,変 形性能が向上したと考える。

3.3. 損傷限界状態

損傷限界時のX方向およびY方向のSa-Sdス ペクトルを図5に示す。図中の黒色破線の要求 曲線は1質点系へ縮約した工学的基盤のスペク トルを示す。また、白抜きのプロットは弾性限 界時の応答を示す。ここではCES指針から、損 傷限界状態を柱・梁のいずれかが初めて許容応 力度に達した時点と定義した。

断面寸法の縮小化によりX方向,Y方向とも に初期剛性はわずかに低下したが,CES構造の ひび割れ後の剛性低下は小さくなった。また, SRC構造でも要求性能を満たしているが,CES 構造も同様に荷重方向による構造性能の差は 小さく,変形性能はX方向,Y方向ともに強度 型を示し,十分な耐力を有することを確認した。

-56-

3.4. 安全限界状態

安全限界時のX方向およびY方向のSa-Sdス ペクトルを図6,7に示す。図中の黒色実線の要 求曲線は、1質点系へ縮約した工学的基盤のス ペクトルを示す。一点鎖線は振動の減衰による 加速度の減衰率Fhを乗じたスペクトルを示す。 さらに、各方向の性能曲線の白抜きのプロット は弾性限界を示し、黒塗りのプロットは最大層 間変形角が0.013(Rad.)(=1/75)を超えた時点も しくは崩壊時の応答を示し、その時点を安全限 界状態と定義した。

SRC構造では、X方向において層間変形角が 0.01(Rad.)に達した時点で建物が崩壊していた が、CES構造としたことによりX方向、Y方向 いずれも、ひび割れ後の剛性および変形性能が 向上し、靭性型の変形性能を示す要求性能を上 回る結果となった。部材断面縮小後もSRC造設 計例と同等の変形性能であり、CES構造を用い ることにより内蔵鉄骨断面を大きく取れるこ とから、柱断面は約20%、梁断面は約35%の縮 小化が可能であることを確認した。

4. 低層建築物への適用のための検討

4.1. 塑性率の検証

前章において,X方向,Y方向ともに各限界 状態時の要求性能を満足することを確認した。 しかしながら低層建築物は,中高層建築物など と比べ初期剛性が高くなる傾向があり,降伏後, 要求曲線と交わるまでに大きな塑性率が必要 となる可能性がある。そこで本章では荷重増分 解析により得られた層せん断力と,1質点系縮 約モデルの代表変位から,X方向およびY方向 の塑性率の算定を行いその妥当性を検証する。

X方向およびY方向の層せん断力と代表変位 の関係と骨格曲線を図8,9に示す。図中の白抜 きのプロットは降伏変位δ,を,黒塗りのプロッ トは安全限界変位みを示す。骨格曲線は Bi-Linearモデルとし、性能曲線と等価なエネル ギーとなる降伏変位を算定した。また,安全限 界変位は層間変形角が0.013(Rad.)の時点の変 位とし、塑性率µは、安全限界変位を降伏変位 で除し($\mu = \delta_s / \delta_v$)算定した。図8よりX方向は $\delta_{\nu}=0.042(m), \delta_{s}=0.134(m)$ であり、 $\mu=3.20$ となっ た。また、図9よりY方向は $\delta_{r}=0.039(m)$, $\delta_s=0.134(m)$ であり, $\mu=3.47$ となった。図5より, Y方向は5.0(m)の片持ち梁が無く, X方向に比 べわずかに初期剛性が高いことから塑性率も 大きくなったと考えられる。文献4)より、CES 柱は0.02(Rad.)の大変形に至るまで大幅な耐力 低下は見られず,耐力は保持できていると言え る。また, 文献5)においても塑性率がμ=2.0を

図7 Y方向の安全限界時のSa-Sdスペクトル

超過し、CES柱は0.03(Rad.)まで耐力低下は見ら れない。以上のことから、本研究でのX方向, Y方向の塑性率は安全限界時の層間変形角 0.013(Rad.)における値であり、CES柱の変形性 能を鑑みると概ね評価できるものと考える。

4.2. ピロティへの適用の提案

図2より、CES柱の耐力は作用応力を上回っ ていることから、許容応力度設計を満足してい ることを確認した。しかしながら低層建築物は 建物重量が小さく、軸力が低くなる傾向にあり、 短期作用応力時では軸力が低いことから耐力 曲線に迫っていることが分かる。また、合成構 造の耐力は累加式で評価できることから、軸力 の高い建物の方が効率良く部材耐力を発揮す ることが可能である。一方、図3~9ではひび割 れ後の剛性低下はSRC造設計例よりも小さく、 既往研究^{4),5)}においてもCES構造は高い変形性 能を示している。

したがって低層建築物に対する適用の可能 性として、ピロティ階の柱もしくは架構にCES 構造を用いることを提案する。その理由として は、主に次の2点であると考える。(1)CES構造 は新構造システムであることから,建築規模に 関わらず限界耐力計算を行う必要がある。(2) ピロティは過去の被害地震において深刻な被 害の発生が見られており,現行法においては柱 の変形性能および崩壊形の検討などが求めら れる。上記(1)は、低層建築物であれば建築規 模に制限はあるが許容応力度計算のみでの設 計が可能であり,既存建築においてもすでに成 熟している構法での設計が一般的である。した がって,新構造システムであるために,建築規 模に関わらず限界耐力計算を行う必要がある CES構造は、低層建築物に用いる際の障害とな り得ると推察される。一方(2)は、駐車場や店 舗など開放的な空間が必要とされる用途には 需要があるものの,現行法においてピロティの 設計をする際には,柱の変形性能および崩壊形 の検討などが求められる。このことから、(1) のCES構造の設計における限界耐力計算にて、 (2)のピロティの要求性能である柱の構造性能 について検討することができれば、図10に示す ように1階のCES柱に変形を集中させ上層階の

損傷を低減するなど、CES構造の構造性能を活 かしたピロティの設計が可能なのではないか と推察した。

5. まとめ

本研究ではSRC造設計例を基に、CES構造の 低層建築物への適用の可能性および、断面の合 理化の検討を行った。得られた知見を以下に示 す。

- 使用限界状態時では、長期・短期作用応力 ともに耐力曲線内に収まっており、許容応 力度設計が満足していることを確認した。
- ・ 柱断面を縮小化したことから初期剛性は わずかに低下したが、SRC造設計例のX方 向よりも高い変形性能を示した。
- ・ 損傷限界状態時では、ひび割れ後の剛性低 下は小さくなり強度型の変形性能を示し た。
- ・ 安全限界状態時では、X方向、Y方向とも にSRC構造以上の変形性能を示し、靭性型 の変形性能であることを確認した。
- ・ 各限界状態時の要求性能を満たしており, CES構造は内蔵鉄骨断面を大きく取れる ことから柱断面は約20%,梁断面は約35% の縮小化が可能であることを確認した。
- CES構造の塑性率は、X方向はµ=3.20、Y 方向はµ=3.47であり、既往研究における CES柱の構造性能を鑑みると概ね評価で きると考える。
- ピロティの柱および架構にCES構造を用いることで、構造性能を活かした設計ができるのではないかと推察した。

参考文献

- 日本建築学会:鉄骨コンクリート(CES)造建 物の性能評価型構造設計指針(案)・同解説, 第1版第1刷,2022.3
- 日本鉄鋼連盟建築構造教材作成委員会:基礎からわかる建築構造物の設計,株式会社オーム社, pp.109-122,第1版第6刷,2010.3
- 3) 宇都宮陸,藤本利昭: CES構造の低層建築物 の適用に関する研究一柱・梁断面の縮小化 のための検討一,日本建築学会大会学術講 演会梗概集,pp.1235-1236, 2022.9
- 石鈞吉,牧本祐太,JuanJoseCASTRO,松井 智哉,倉本洋:H型鉄骨内蔵CES柱の変形能 力評価に関する研究,日本建築学会構造系 論文集,No.682, pp.1977-1982, 2012.12
- 5) 藤本利昭, 大崎広貴: 内蔵鉄骨形状の異な るCES部材の構造性能に関する実験的研究, 日本建築学会構造系論文集 第83巻 第752 号, pp.1507-1515, 2018.10

<u>- 58</u> -