微生物産生ポリエステルを用いた伸縮性ポーラス繊維の創製と 医療材料への応用

○1 日大・生産工,2 東大・農,3 三菱ガス化学(株),4 JASRI 辻本 桜¹, 大村 拓², 前原 晃³, 加部 泰三⁴, 髙橋 大輔¹, 岩田 忠久²,山田 和典¹

1. 緒言

生体内で分解・吸収される一時修復材料の生 体吸収性高分子は、以前より医療分野において 研究がされている。また、生体吸収性医療材料 は、除去手術を必要としないことから、患者の 負担を軽減するなどの利点がある。そのため、 生体吸収性医療材料の開発が進められ、現在ポ リヒドロキシアルカン酸 (PHA)、ポリグリコ ール酸 (PGA) やポリ乳酸 (PLLA)などが生体 吸収性を有する手術用縫合糸として実用化さ れている。しかし、これらの手術用縫合糸は、 柔軟性に乏しいため、結び目の安定性が悪く、 摩擦係数が大きいため、縫合部位を動かすと生 体組織が引き切られるような感覚になるなど の欠点があった」。これまで、心臓や関節など、 可動を必要とする箇所には柔軟性がある非生 体吸収性高分子で作られた縫合糸が使用され てきた²⁾。生体吸収性高分子の中でも、PHAの 一種であるポリ[(R)-3-ヒドロキシブチレート] (P(3HB))は、PGA や PLLA と同様に硬くてもろ いので、その性質を改善する目的で、共重合体 化による柔軟性の付与が試みられてきた。 P(3HB)共重合体の一種であるポリ[(R)-3-ヒド ロキシブチレート-co-4-ヒドロキシブチレー ト] (Fig. 1, P(3HB-co-4HB))は、生体吸収性³⁾や 強くてしなやかな特徴を有することが報告さ れており、最近になって、伸縮性 4 も有するこ とが発見されている。このことから、可動を必 要とする部位へ使用されてきた、柔軟性を有す る非生体吸収性の縫合糸の代替として期待で きる。

Fig. 1. Chemical structure of P(3HB-co-4HB).

さらに、一本の繊維内部が多孔質であれば、 内部に薬剤を含侵させ、分解とともに薬剤が徐 放されるという薬剤徐放性や、結紮部(結び 目)が小さくなるという利点が期待でき、高機 能な縫合糸へ展開できると考えた。本研究では、 PHAの繊維内部を多孔質にし、高強度繊維を 作製する方法として開発された微結晶核延伸 法 ⁵により、P(3HB-co-4HB)から伸縮性を有す る生体吸収性のポーラス繊維の作製および医 療用材料への応用の可能性を評価した。 2. 実験方法

2-1. <u>ポーラス繊維の作製</u>: P(3HB-co-16 mol%-4HB)は三菱ガス化学から提供されたものを使 用した。重量平均分子量約60万のP(3HB-co-16 mol%-4HB)を170℃で溶融紡糸し、氷浴中 (4℃)で巻き取ることで非晶質繊維を得た。そ の後4℃で0~72時間保冷し、微結晶核を形成さ せた繊維を室温で延伸(最大延伸倍率: λ =12) することで延伸繊維を得た。なお、引張試験、 大型放射光施設でのX線測定、走査型電子顕微 鏡(SEM)により作製したポーラス繊維の物 性、高次構造及び断面観察を行った。

2-2. 繊維の結紮部 (結び目) サイズの比較:作 製したポーラス繊維とPHAの一種で、実際使用 されている手術用縫合糸 (非ポーラス繊維, Monomax@: P(4HB)) を外科結びし、結紮部 (結び目) サイズを比較した。

2-3. <u>ポーラス繊維への溶媒含浸</u>:薬剤を溶解す るための溶媒として*N*,*N*・ジメチルスルホキシ ド (DMSO)を使用し、作製したポーラス繊維 を室温で24時間含浸し、光学顕微鏡と小角X線 散乱を用いてポーラス繊維の溶媒浸透性を評 価した。

実験結果・考察

3-1. <u>伸縮性ポーラス繊維の形態と物性</u>: 微結 晶核形成時間を0~72時間と変えて作製した P(3HB-co-16 mol%-4HB) 繊維の断面を走査型 電子顕微鏡 (SEM) で観察した (Fig. 2(a)~(c))。 微結晶核形成時間 (IC: Isothermal Crystallization)

Fig. 2. Cross-section SEM images of P(3HB-*co*-16 mol%-4HB) elastic porous fiber (a)without isothermal crystallization (IC) 0 h, (b) 24 h and (c) 72 h.

Processing of Elastic Porous Fibers from Microbial Polyester and Their Application to Medical Materials. Sakura TSUJIMOTO が0時間ではポアが観察されなかった。一方、 微結晶核形成時間が12時間以降では繊維内部 にポアが観察され、微結晶核形成時間が短いと ポアサイズが大きくなるのに対し、微結晶核形 成時間が長くなるとポアサイズが小さくなる 傾向であった (IC 24h:11 µm, IC 72h:4.7 µm)。 つまり、微結晶核形成時間によりポアサイズの 制御が可能であることが示唆された。また、作 製したP(3HB-co-16 mol%-4HB) 繊維は、約2倍 に伸びた後、応力を開放すると元の状態へ戻る という伸縮性を有していた (Fig. 3)。従って、 微結晶核延伸法によりP(3HB-co-16 mol%-4HB) から高強度かつ伸縮性を有するポーラス繊維 の作製に成功した。

Fig. 3. Hysteresis curves and images of P(3HB-*co*-16 mol%-4HB) elastic porous fiber (a) before loading and (b) while loading.

3-2. 結紮部のサイズ比較: 作製した P(3HB-co-16 mol%-4HB)伸縮性ポーラス繊維 (IC: 72 h) と現在手術用縫合糸として使われている非ポ ーラス繊維の2種類を外科結びし、走査型電子 顕微鏡 (SEM) 画像から結紮部 (結び目)のサ イズを比較し(Table 1, Fig. 4) すると、伸縮性ポ ーラス繊維の結紮部サイズは、現在手術用縫合 糸として使われている非ポーラス繊維の結紮 部サイズより小さくなることがわかった。これ は、繊維内部に存在するポアに起因する。つま り、結紮部が小さくなることで、ほどけづらく なり、炎症を起こしにくくなるという利点が期 待できる。

Fig. 4. SEM images of knot obtained from (a) P(4HB) fiber and (b) P(3HB-*co*-16 mol%-4HB) elastic porous fiber (IC:72 h).

-	Table 1	l. (Comparison	of the	(a) and	1 (b)	knot	size
---	---------	------	------------	--------	---------	-------	------	------

結紮部のサイズ	(a) P(4HB)	(b) P(3HB-co-4HB)					
横 / mm	0.93	0.67					
縦 / mm	1.69	1.17					
3-3. 伸縮性ポーラス繊維の溶媒浸透性:作製し							
た $P(3HB-co-16 mol%-4HB)$ 伸縮性ポーラス繊							

維を DMSO に浸し、光学顕微鏡観察によって

溶媒の浸透性を評価した (Fig. 5(a, c))。 偏光顕 微鏡写真において、溶媒含浸前のポーラス繊維 は黒く (Fig. 5 (a))、室温で 24 時間 DMSO を含 浸したポーラス繊維は、半透明であった (Fig. 5(c))。含浸前のポーラス繊維では、ポアの存在 による光の乱反射により、繊維が黒く観察され たのに対し、DMSO を含浸した繊維では溶媒が 浸透し、ポアが埋まったので、光を通過させて 半透明に観察されたと考えられる。また、室温 で溶媒含浸を行ったことで、繊維の形状を維持 したまま溶媒含浸が可能であった。次に、小角 X 線散乱より溶媒を浸したことによるポーラ ス繊維内部の構造変化を評価した (Fig. 5(b, d))。 溶媒含浸前のポーラス繊維では、ポアの存在に 起因した、赤道線上のストリーク散乱が観察さ れた (Fig. 5(b)) のに対し、溶媒含浸後の繊維で は、赤道線上のストリーク散乱が観察されなか った (Fig. 5(d))。これは、溶媒含浸によって繊 維内のポアが埋まったことを示唆する。

4. 結言

本研究では、微生物産生ポリエステルの一種 である P(3HB-co-16 mol%-4HB)から、微結晶核 延伸法により高強度かつ伸縮性を有したポー ラス繊維の作製に成功した。繊維内のポーラス を利用することで、現在手術用縫合糸として使 われている繊維の結紮部サイズより小さくす ることができた。さらに、ポーラス繊維への DMSOの浸透性は良好であることがわかり、ポ ーラス繊維内部への薬剤含侵が期待できる。

参考文献

- 1) H. Takasawa, 繊維学会誌, **49**, 19-29 (1996).
- 2) K. Tsushima et al., 医療機器学誌, 48, 27-28 (1978).
- 3) TH. Ying et al., Biomaterials, 29, 1307-1317 (2008).
- 4) Y. Kawamura *et al.*, *ACS omega*, **6**, 7387-7393 (2021).
- 5) T. Tanaka et al., Polymer, 48, 6145-6151 (2007).