速度分布関数に基づくビーム集束性の評価

- 核融合プラズマ加熱用負イオンビームの品質向上に向けて -

日大生産工	○波場	泰昭	荒巻う	光利
核融合科学研究所	永岡	賢一	津守 う	克嘉

1. まえがき

核融合炉は、次世代の基幹エネルギー源とし て期待されている.日本も参画している国際プ ロジェクトであるITER計画では、2025年の核 融合実験炉の運転開始に向けて、磁場閉じ込め 型核融合プラズマを加熱するために中性粒子 ビーム入射加熱装置の開発が進められている. 高速な中性粒子を生成するためには、高エネル ギー領域(>100 keV)でも高い中性化効率を 有する水素負イオンビームが必須となる.

高周波放電方式を用いた負イオンビームの 発散角の抑制は中性粒子ビーム入射加熱装置 の重要な開発課題の1つで,現時点で14 mrad のビーム発散角が得られている(参考文献1).

この値はITER計画の仕様(3-7 mrad)に対し て2-4倍以上大きく、この要求を満たすにはビ ームの制御性を格段に向上させる必要がある. 図1に示すように、負イオン源(負イオンビ ームを生成する装置)から負イオンが引き出さ れる機構は三通りあると考えられている. 第一 の機構(I)では、バルクプラズマ領域で生成 (体積生成)された負イオンが,初段の電極(プ ラズマ電極) 孔中央から引き出される. 第二の 機構(Ⅱ)では, プラズマ電極表面で生成(表面 生成) された負イオンが、 バルクプラズマを経 由して引き出される. 第三の機構(Ⅲ)では、表 面生成された負イオンが,バルクプラズマを経 由せずに, プラズマ電極孔縁部から直接引き出 される.これらの異なる生成過程および引出経 路を起源とする負イオンは,異なる速度分布関 数を持ってビーム加速電極が成す静電レンズ に入射するため,生成される負イオンビームの 集束性を必然的に低下させる.従って、ビーム

の集束性を極限まで向上させるには、これら三 つの引出機構を理解し、制御する必要がある.

2. 提案手法

負イオン源からの負イオンビーム引出機構 には複数の素過程および輸送過程が関わって おり,負イオンビームの集束性を向上させるこ とは容易ではない.加えて,負イオンが引き出 されると同時に電子も引き出されるため,下流 に位置する電極内部に電子を除去するための 磁石を埋め込む必要がある.この磁石により形 成される磁場は,ビーム引出領域にも伸長して いる.そのため,負イオン源では,ビーム引出 領域において負イオンは複雑な速度分布関数 を持つと予想される(図2参照).

図2 負イオンビームとその速度分布関数.

そこで本研究では、負イオン源の引出領域に おける負イオンの生成・輸送過程と、負イオン ビームの速度分布関数との関係を明らかにし、 その知見をもとに負イオンビームの集束性を 極限まで向上させることを提案する.

3. 実験方法および測定方法

図3に, 負イオンビームの速度分布関数を計 測する原理を示す. 測定対象のビームを格子状 に配列させたピンホールアレイに照射するこ とで細かく分離する. ピンホールを透過したビ

Evaluation of the Beam Divergence Based on Velocity Distribution Functions — Toward the Optimization of Negative Ion Beams for Fusion Plasma Heating — Yasuaki HABA, Mitsutoshi ARAMAKI, Kenichi Nagaoka and Katsuyoshi TSUMORI ームは一定距離進行した後,カプトン箔に照射 され照射痕を残す.照射痕の強度は,ビーム電 流密度の時間積分に比例して大きくなる(参考 文献2).この照射痕は図4に示すように,ビ ーム断面内の速度分布に依存して分裂してお り,これらを分離することでそれぞれの速度分 布関数が得られる.本計測器では,単孔から引 き出された負イオンビームの速度分布関数を 高分解能で計測することが可能となる.

図 4 ピンホールによって分割されたビームによる 照射痕.

4. 実験結果および検討

図5に、核融合科学研究所の負イオン源から 引き出された単一の負イオンビームを複数の 速度分布成分に分離した結果を示す.それぞれ の速度分布成分が持つ水平方向の速度成分 (v_x) と垂直方向の速度成分 (v_y) との関係(ビー ム進行方向の速度 v_z で規格化)が明らかにされ、 それぞれの速度分布成分が固有に持つ発散角、 重心および含有率を評価することが可能とな った.ビーム中心近傍に位置する速度成分(b) は、最も小さく(含有率19%)、縦長構造を持 つ.一方、速度成分(a)と(c)の二成分は大きく (含有率はそれぞれ41%と40%)、ビーム外縁 部に位置する.これらの異なるビームパラメー タを持つ成分は、必然的に静電レンズに対して 異なる集束特性を持つため、ビーム全体として の集束性が制限される.それぞれの速度分布成 分の含有率は、負イオン源から引き出された時 点で決まっているため、プラズマ電極より下流 の静電レンズで制御することはできない(参考 文献3).一方、各速度成分の重心は、ある程 度の制御が可能となるが、異なるビームパラメ ータを持つため完全に集束させることは不可 能である.

本計測の結果は、負イオン源から引き出され た負イオンビームには複数の速度分布成分が 内在しており、これがビームの集束性を制限し ていることを明らかにしている.それぞれの速 度分布成分(図5の(a)-(c))とビーム引出機構 (図1の(I)-(III))との対応関係を明らかにす るとともに、それぞれの速度分布成分が固有に 持つ制御パラメータを同定し、負イオンビーム の集束性を極限まで向上させることが今後の 研究課題となる.

5. まとめ

負イオンビームの速度分布関数を高分解能 で計測する技術を開発し、負イオンビームが複 数の速度分布成分の重ね合わせで構成されて いることを世界で初めて見出し、このことがビ ームの集束性を制限していることを示した.

参考文献

- 1) A. Hurlbatt et al, AIP Advances **11**, 025330 (2021).
- Y. Haba et al, "Development of a dual beamlet monitor system for negative ion beam measurements", Rev. Sci. Instrum. 89, 123303 (2018)
- Y. Haba et al, "Characterisation of negative ion beam focusing based on phase space structure", New J. Phys. 22, 023017 (2020)

図 5 負イオンビームに内在する複数の速度分布成分に対する二次元速度分布.(a) -x方向にドリフトした成分,(b) ビーム中心近傍に位置する成分,(c) +x方向にドリフトした成分.