水素燃料電池自動車向け回生失効時の永久磁石モータの

廃電によるエンジンブレーキ模擬の検討

日大生産工(院) 〇町田 直人, 日大生産工 加藤修平

1. はじめに

二酸化炭素を排出しない燃料電池車(Fuel Cell Vehicle:FCV)は、地球温暖化やピークオイル等の環境問題対策として開発が進んでおり、トヨタ自動車の「MIRAI」やHONDAの「クラリティ」など実用化されている。それに伴い、水素ステーション(充填スポット)も4大都市圏を中心に約100箇所と拡充しており、今後さらに普及が進むと考えられる。

FCV の蓄電池は電気自動車(<u>Electric Vehicle:EV</u>) に比べて容量が約 1/10 以下である為、蓄電池が満充 電になりやすい。この時、回生電力の受け入れ先が 無く、トラクション電動発電機による制動力が得ら れないという FCV 特有の弱点がある。以下にその課 題、提案方法、実験結果について詳述する。

従来の課題(回生失効時の制動力確保)

トヨタ自動車 FCV「MIRAI」の蓄電池容量は約 1.3kWh であり、日産自動車の EV「LEAF」の 30kWh と比較しても一桁以上少ない。このことから、FCV において蓄電池が満充電に近い状態で制動力(ブレ ーキ力)が必要な場合、トラクション電動発電機では 制動力を発生できない。本稿ではこの状態を回生失 効と呼び、このような場合(特に長い下り坂)は別の 方法で制動力を得る必要がある。

3. 提案するモータ発電機の制御方法

一般的には電流ベクトル長 Iaが最短となる駆動点 P(Maximum Torque Per Ampere:MTPA)を選択すると 電力変換器と永久磁石モータの両方において比較的 高効率な駆動が可能である。しかし、本稿では回生 失効時に可能な限り永久磁石モータに損失を発生さ せるため、電流ベクトル長が最も長くなる、又は電 圧制限楕円に最も近くなる駆動点を選択する方法を 提案する。

図1より電流制限円と電圧制限楕円の両方を満足 する駆動点はS₂、T₁、T₂となる。この選択肢の中か ら永久磁石モータの巻線抵抗値と鉄損抵抗値(電気 角周波数に依存)から銅損、鉄損の合計が多い駆動点 を選ぶことで永久磁石モータにおいて最大の損失が 得られる。

以上より本稿で提案する電流ベクトル選択方法は dq 電流平面において界磁を強めた状態の第1象限と 第4象限を使う為、低速領域においても比較的高い 電機子電圧、言い換えると高い DC 電圧が必要とな る。しかし適用先の FCV はインバータ(DC/AC)前段 に DCDC コンバータを必ず備えている。従って、本 来は高速領域での運転範囲拡大の目的で使用する高 い DC 電圧を利用可能な為、電流ベクトル選択肢が 狭くなることは避けられる。

図1 電気子電流・電気子電圧を考慮した最大損失

駆動点

Fig. 1 Maximum losses driving-points under consideration of the armature current and voltage limits

A Study of Zero Electric Brake Driving-Points on of Permanent Magnet Synchronous Motors when Regenerative Braking to Become Disabled Halfway Through a Continuous Downhill for Fuel Cell Vehicles

Naoto MACHIDA, Shuhei KATO

4. ゼロ発電時の制動力の実験検討

〈4・1〉実験で使用する永久磁石モータ諸元と実験 装置図

表1に本稿で定量的に検討する永久磁石モータの 諸元を示す。図2に実験装置の全体図を示す。

Rated speed	Ν	3000 rpm
Rated Power	W	2.0 kW
Rated Current	Ι	12A
Pole pair	P_n	4
Armature resistor	R_a	0.2 Ω
interlinkage magnetic flux	Ψ_a	1.311 Wb
d-axis Inductance	L_d	2 mH
q-axis Inductance	L_q	2 mH

表1 定量検討する永久磁石モータの主要諸元 Table. 1 Specifications of the target PM motor

図2 実験装置 Fig.2 Experimental setup

〈4・2〉各回転速度における蓄電池対機械軸の入出 カ特性

図 3 に回転速度 2000 rpm における蓄電池と機械 軸の電力をそれぞれ入出力とする入出力特性の実験 結果を示す。同図の正値は機械軸(縦軸)であれば制 動力、蓄電池(横軸)であれば放電を意味し、負値は それぞれ加速力、充電を意味する。

図3より、原点つまりゼロ発電時に電流値に比例 して制動力も増加していることがわかる。2000 rpm 時の最大制動力は約205Wとなった。また、図4に 各電流値におけるゼロ発電時の制動力特性を示す。 図4より、1000 rpm, 2000 rpm, 3000 rpm ともにモータ 電流により制動力が増加していることがわかる。

図3 2000 rpm における蓄電池対機械軸入出力特性 Fig.3 Input-output characteristics between the battery and the mechanical shaft at 2000 rpm

図4 各電流値におけるゼロ発電時の制動力特性 Fig.4 Braking force when not generating power at each current value

5. おわりに

本稿では FCV は蓄電池が満充電になると制動力が 得られない弱点を挙げた。実験結果からゼロ発電時 であっても提案方法で制動力が得られることが分か った。必要に応じて一時的に定格電流以上の電流を 流すことで下り坂で必要とされる制動力を得られる と考えられる。今後は実験により一時的に定格以上の モータ電流を流した時の制動力と永久磁石モータの発 熱を実測する予定である。

文 献

 (1)加藤他.「燃料電池車向け回生失効時の永久磁石モータ 制動力確保の検討」 電気学会論文誌 D(産業応用部門誌).
2019.139.3.225-231