地方鉄道を対象とした軌道状態診断システムの

開発と運用に関する研究

日大生産工(院) ○鈴木 湧也 日大生産工 綱島 均

1. 緒言

鉄道は車輪が軌道によって案内されている ことから,軌道の状態が鉄道そのものの安全性 に大きく影響を与える。よって鉄道事業者は軌 道を管理する必要があり,保線係員の巡回や軌 道検測車による計測を行うことで安全性を保 っている.しかしこれらの方法は人員と費用が 掛かり,地方鉄道ではこれらを満足に確保する ことが難しいといった現状がある。

このような問題に対して、営業車両に各種センサ類からなる車体動揺計測装置を設置する ことで車体の振動加速度を計測し、加速度から 軌道の状態をモニタリングするシステム1)20の 開発が行われている。

しかし、従来のモニタリング手法では振動加 速度のみで評価をしていたが、車体の振動は走 行速度の影響を大きく受ける為、車体の揺れが 速度の影響か軌道異常の影響か判別しにくい という問題点がある。

本研究では,過去に得られた大規模なデータ に基づいて,速度の影響を考慮した新しい軌道 状態診断手法を提案する。

2. 軌道状態診断システム

軌道状態診断システムの概要を図1に示す。 本システムでは営業車両の振動加速度を計測 する計測部と取得した振動加速度データを解 析する解析部に分けられる。計測部では3軸セ ンサ,ジャイロレート,GPS受信機などからな る車体動揺計測装置を営業車両に搭載する。運 行と共に車両から電源を供給することで常時, 車体振動加速度を計測することが可能である。 取得した振動加速度を,携帯回線を通じてサー バーへと伝送する。 解析部では、サーバーへ 送られてきた振動加速度情報をもとに診断が 行われる。本システムにより軌道の状態を逐次 監視することで軌道異常などの発見を行うこ とができ,鉄道事業者へとフィードバックを行 うことで保守計画に活用することが可能とな る。

Fig.1 Track condition monitoring system

3. 診断手法

3.1 車体動揺の計測

地方鉄道において,2016年9月から2021年6 月まで車体動揺計測装置を設置し,常時計測を 行う実車走行実験を実地した。サンプリング周 波数は82 [Hz] である。ただし,全般検査の理 由により2018年10月から2018年12月と2020 年4月から2020年5月のデータは計測されてい ない。

本研究ではこの試験で得た車体上下加速度 を用いて軌道状態の評価を行った.なお、車体 動揺計測装置の計測データから通り不整,水準 不整を評価できるが本稿では、上下不整のみを 評価対象とする。

3.2 軌道状態診断システムで用いる評価値

軌道の不整は、一般に10m弦正矢法により計 測、管理されている。そこで本システムでは軌 道10m毎に振動加速度の半振幅の最大値を取 得し、評価値として用いて診断する。

3.3 ガウス過程回帰を用いた診断

車体振動加速度は走行速度による影響を強 く受けるため、速度の影響を考慮して軌道状態 診断を行う必要がある。そこで、走行速度と最 大半振幅の関係より回帰方法の一種であるガ ウス過程回帰を用いて診断を行う。

ガウス過程回帰とはあらゆる入力xに対して の出力yがガウス分布に従うものであり,非線 形の関数関係でも線形関係のモデル化も可能 であるといった利点がある³。またデータの信 頼性を予測分布で表すことができて、データの 多い部分では予測分布は狭くなり正確に、デー タのない部分では領域が広くなることで曖昧 さを表現することが可能である。ガウス過程の 定義を式(1)以下に記す。

$$f \sim GP(\mu(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}'))$$
(1)

ここで、xは入力データ、fは入力に対応する出力、 μ は平均、k(x,x')は入力データ全てのペアx,x'に対してカーネル関数を求めたものである。

予測分布は次式で計算できる。

 $p(\mathbf{y}^*|\mathbf{x}^*, \mathcal{D}) = \mathcal{N}(\mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{y}, k_{**} - \mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{k}_*)$ (2)

ここでKは入力データ全てのカーネル行列で あり、 k_* は入力 x^* と各学習データ $D: x_1, x_2 \cdots x_N$ との内積を並べたベクトルであり、 k_{**} は入力 x^* の自身との内積である。

4. 軌道状態診断結果

4.1 著大な振動が観測される駅間の診断

ここでは実データを用いて軌道の状態診断 を行う。まず、軌道状態が悪化している箇所を 特定するために、各駅間において著大な振動が 観測された駅間の特定を行う。各駅間において 最大半振幅の値で1.0[m/s²]を超えた数を計算 した。始発駅をAとして終点まで順にアルファ ベットで示し、各駅間毎に検出数を集計し、正 規化した結果を図2に示す。図2より、最も頻繁 に揺れが観測された駅間はNO駅間であるこ とがわかる。そこで、NO駅間の軌道診断を行 った。

4.2 振動の頻度が高い駅間の診断

軌道の状態を評価するために、1カ月間の計 測データに対して最大半振幅値に基づきカラ ーマップの作成を行った。示した軌道状態図の 結果を図3に示す.この時、営業車両が走行し なかった日は欠損データとして表示していな い.また、1日に複数回の走行した場合は要注 意駅間内にて最も高い最大半振幅値が観測さ れたデータを代表データとして軌道状態図の 作成を行った。

次に特定した駅間の中で10mごとに異常な 振動加速度として1.0[m/s²]を超えた検出頻度 を,ヒストグラムを用いて異常発生個所の推定 を行なった。図3より26.0~26.5[km]と 27.2~27.7[km]において,著大な振動が観測され

Fig.2 Number of detections for sections (Apr.2021)

Fig.3 Track condition in section NO (2021/04)

Fig.4 Track condition in 27.2-27.7[km] (2021/04)

ていることがわかる。より詳細に診断を行うために、一例として27.2~27.7[km]において解析を行った。

4.3 特定区間の軌道状態図

27.2~27.7[km]における軌道状態図を図4に示 す。ヒストグラムより27.5[km]付近において 1.0[m/s²]を超えた振動が観測された頻度が 特に高いことがわかる。また軌道状態図を見る と多くの日で著大な振動である赤色が表示さ れていることから,特に軌道異常がある可能性 が高いと推察される。

4.4 軌道の時間経過による振動の変化

図4の軌道状態図より特に頻度の高かった 27.5[km]を含む27.45~27.55[km]の100[m]の長 期間の推移を図5に示す。軌道の長期的変化を 把握するために要注意区間の半振幅の中で最 大となる半振幅値を用いて時系列の推移を示 した。

図5より2016年から2018年にかけては最大半 振幅値が1~2[m/s²]程度で推移していたが2019 年以降は最大半振幅値が3.0[m/s²]を超えてい ることがわかる。よってこの区間においては軌 道状態が悪化していると考えられる。また2020 年9月から振動が低下しているが、同月におい て、この区間で補修が行われており、保線の効 果が確認できる。

4.5 営業車両の走行速度による影響

車体が大きく揺れる原因として考えられる ものは,軌道不整や軌道異常を通過したことに よる揺れが考えられる。さらに走行速度が速い 場合には大きな揺れとなることがある。そこで, 走行速度が振動加速度に与える影響を評価す る必要がある。

図6に27.45~27.55[km]において速度と最大 半振幅値との散布図を示す。図6において赤丸 で囲まれた点群は外れ値として速度の影響以 外によるものであると考えられる。そこで、こ れらの計測値の異常程度を定量的に評価する 必要がある。

4.6 ガウス過程回帰を用いた軌道診断

走行速度と最大半振幅値においてガウス過 程回帰を行い,新たに速度の影響を考慮した軌 道状態図を作成する。27.45~27.55[km]におけ るガウス過程回帰による結果を図7に示す。

図7では予測分布を用いてある規定に基づい て背景の色付けを行った。ガウス過程回帰にお いて平均値を予測する応答曲面を青と緑の境

Fig.5 Changes in the value of max amplitude for 27.45-27.55[km]

Fig.6 Correlation diagram of velocity and max amplitude for 27.45-27.55[km]

Fig.7 Results of Gaussian process regression of velocity and maximum amplitude for 27.45-27.55[km]

界線で示し、その境界線を下回ったデータは軌 道異常がないものと診断した。応答曲面を超過 した領域については+1 σ の範囲を緑で, +1 σ ~+1.5 σ の領域では黄色, +1.5 σ ~+2 σ を橙色, +2 σ 以上の領域を全て赤で表示を行った。こ のようにして, ガウス過程回帰による診断では, データ点がこの領域のどこに存在するかで軌 道状態図の作成を行なった。

振動加速度による軌道状態図とガウス過程 回帰を用いた軌道状態図の比較を図8に示す。 図8(a)には27.45~27.55[km]の上下振動加速度 の軌道状態図を示し、図8(b)ではガウス過程回 帰による診断結果を示す。

図8 (a)ではこの100[m]区間のほとんどの位 置で高い振動加速度を検出しているが、図8 (b) においては一部分のみに赤などの判定が行わ れていることがわかる。このことから走行速度 による揺れの影響を考慮した正確な軌道診断 が行える可能性を示した。

5. 結言

本研究では従来の診断システムでは考慮さ れていなかった車両速度の影響を考慮した軌 道診断手法の検討を行なった。走行速度と振動 加速度の関係よりガウス過程回帰を用いて軌 道状態の診断を行なった

地方鉄道の動揺を計測した長期間のデータ に適用した結果,軌道異常が発生している箇所 と異常程度を明確化すること可能になった。

今後は他の診断区間においても同様の解析 を行い,検討をしていく予定である。また高低 不整や継ぎ目落ちの上下振動の異常だけでな く通り不整や水準不整など左右振動の診断を 行っていく必要があると考える。

参考文献

- Tsunashima H., Mori H., Ogino M. and Asano A. Development of Track Condition Mon- itoring System Using Onboard Sensing Device. In: Zboinski, K. (ed.). Railway Research; IntechOpen; doi:10.5772/61077; 2015.
- 2) Tsunashima H. Condition Monitoring of Railway Tracks from Car-Body Vibration Using a Machine Learning Technique. Appl. Sci. 2019, 9, 2734.
- 3) 持橋 大地・大羽 成征,ガウス過程と機 械学習,講談社(2020)

(a) Track condition diagram by car-body vertical acceleration only

(b) Track condition diagram by the proposed method(c) Fig.8 Track condition diagram