CFT 造超高層免震建築物の構造計画の分析

-設計クライテリアに関する検討-

日大生産工(院) 〇井出 翔太 日大生産工 藤本 利昭

1. はじめに

コンクリート充填鋼管(以下, CFT)造はコ ンファインド効果等の優れた構造的特徴を有 することから,超高層建築物に多く適用されて いる。また、今後巨大地震の発生や長周期地震 動が予想される中,それらを考慮した耐震設計 が求められている。既存の耐震技術には,構造 物の基礎または中間層に免震層を設け, 地震時 の免震層上部の揺れを軽減し,損傷や応答加速 度を抑える免震構造,架構内にエネルギー吸収 装置・部材を組み込み,構造物の応答を低減さ せる制振構造がある。実際に、図1に示すよう に1995年兵庫県南部地震以降, CFT造超高層建 築物において制振構造が主流となっており,同 時に免震構造も採用され始めたことが伺える。 免震・制振装置はそれぞれが振動制御特性を有 し多種多様であるため、各種装置がどのような 構造計画に対応し,更にどのような振動特性を 示すのかを把握する必要がある。

そこで本研究では、CFT造超高層建築物を耐 震設計上の構造種別によって分類し構造計画 を分析した。また、分析では取り入れられる各 種免震・制振装置を減衰特性による分類を行っ た。そして、CFT造超高層建築物の構造計画に おける分析で得られた知見を報告する。

2. 対象建築物

本研究で取り扱うCFT造超高層建築物は, 1968年から2021年の期間で日本建築センター 発行「ビルディングレター」¹⁾および日本総合 試験所発行「GBRC」²⁾に記載された性能評価シ ートを基に,制振構造122棟,免震構造16棟, 耐震構造28棟の合計166棟を対象としている。 また対象のCFT造超高層建築物については,文 献3)で制振構造122棟において構造計画の分析 が行われている。そこで本論文では免震構造16 棟を対象に設計クライテリアに関する構造計 画の分析を行った。なお,分析項目によっては 明記されていない建物もあるため,その分析か ら除外した建物もある。

3. 調査結果

3.1 免震装置の分類について

免震構造建築物における免震層は、構造物の 重量を支持する「支承材」、地震力によって変 形した際に元の位置に戻そうとする「復元材」、 地震のエネルギーを吸収し揺れを低減する「減 衰材」の3つに大別される免震装置により構成 されている。

本研究では、対象の免震構造建築物の事例を、 採用されている「減衰材」としての機能を有す る各種免震装置の減衰特性によって,減衰力が 変位に依存するもの(以下,変位依存型),速 度に依存するもの(以下,速度依存型),両方 を併用するもの(以下,併用型)の3種類に分 類した⁴⁾。変位依存型に分類される免震装置に は鉛プラグ入り積層ゴム、鉛ダンパー、U字型 鋼材ダンパーがあり,速度依存型に分類される 免震装置には高減衰ゴム系積層ゴム,オイルダ ンパーがある。対象の免震構造建築物16棟の内 5棟が変位依存型,4棟が速度依存型の装置を採 用しており、6棟が変位依存型と速度依存型の 装置を併用して採用していた。なお、1棟の事 例に関しては「減衰材」が変位依存型,速度依 存型のどちらにも分類されない弾性すべり支 承のみを採用していたため,分類からは除外す ることとした。

Analysis of Structural Plans for CFT High-Rise Seismic Isolation Buildings — Consideration about Design Criteria —

Shota IDE and Toshiaki FUJIMOTO

1 - 24

3.2 免震層について

表1に免震層が基礎,中間層(地上階),中間 層(地下階)にある棟数を示す。

対象免震構造建築物16棟の内,基礎免震構造 であるのは4棟と少なく,残りの12棟は中間層 免震構造であった。また,中間層免震構造12棟 の内訳としては5棟が地上階,7棟が地下階に免 震層を設計していた。更に中間層免震構造の事 例に関しては,全ての事例が免震層を境界に上 部構造と下部構造で異なる構造種別を採用し ており,建物の機能を切り替えていた。

3.3 地震層せん断力係数比について

ここでは、レベル2地震動時における建物頂 部の絶対加速度を重力加速度(980cm/s²)で除 した値を最上階の最大応答地震層せん断力係 数⁵⁾とする。更にその値を免震層の最大地震層 せん断力係数で除した値を地震層せん断力係 数比としている。この地震層せん断力係数比が 大きい程,高さ方向に対して地震層せん断力係 数の増幅が大きいことを示す。なお,建物頂部 と免震層における最大地震層せん断力係数は 必ずしも同一の地震波によるものではないた め,本研究における地震層せん断力係数比は同 一地震波での地震層せん断力係数の増幅特性 を表しているわけではない。

図2に地震層せん断力係数比と免震層固定時 の一次固有周期の関係,図3に地震層せん断力

 表1
 免震層位置

 ·····
 中間層免震

(地上階)

5

基礎免震

4

棟数

中間層免震

(地下階)

7

係数比と免震層最大層せん断力係数の関係,図 4に地震層せん断力係数比と免震層最大層間変 位の関係を示す。また,図2~4の全ての図に短 辺,長辺の両方における地震層せん断力係数比 をプロットしている。

なお本節の地震層せん断力係数比について は、文献5)で建築物高さが60m未満の免震構造 建築物において分析されており、以下の報告が されている。

免震層固定時の一次固有周期が長い程,地震 層せん断力係数比が大きくなる傾向がある。更 に,免震層最大層せん断力係数が大きい程,地 震層せん断力係数比が小さくなる傾向がある。 また,免震層最大層間変位と地震層せん断力係 数比には明確な傾向は見られなかった。

図2~4より,本研究の対象となる建築物高さ が60mを越える免震構造のCFT造建築物にお いても,ばらつきはあるが文献5)と同様の傾向 を示すことが確認できた。

図3 地震層せん断力係数比と免震層最大地震 層せん断力係数の関係

図4 地震層せん断力係数比と免震層最大層間 変位の関係

3.4 免震層層間変位について

図5に免震層最大層間変位の年代推移,図6に 免震層最大層間変位と免震化後(レベル2地震 動時)の一次固有周期の関係を示す。また,図 5,6どちらも短辺,長辺の両方における免震層 最大層間変位をプロットしている。表2に前述 の免震装置の分類によって見た時の短辺,長辺 方向の免震層最大層間変位の最大値,最小値, 平均値を示す。

図5より年代による免震層最大層間変位の明 確な傾向は見られなかった。図6より免震化後 のレベル2地震動時の一次固有周期が長くなる 程免震層層間変位は大きくなる傾向が見られ た。表2より対象建築物全体における免震層最 大層間変位の平均は短辺,長辺それぞれ36.5cm, 36.0cmであった。また,一般的に免震構造建築 物の目標耐震性能として免震層層間変位はレ ベル2地震動時において40cm以下とされるこ とが多い。免震装置の分類によって免震層最大 層間変位を見ると,変位依存型と併用型には最 大で40cmを超える設計が確認できた。

3.5 最大層間変形角について

図7にレベル1,2地震動時の最大層間変形 角R1,R2の年代推移,図8に最大層間変形R1 とR2の関係を示す。

図 7 より最大層間変形 R1, R2 は共に年代に よる明確な傾向は確認できなかった。図 8 より 同一の事例におけるレベル 1, 2 地震動時の最 大層間変形角 R1, R2 は,それぞれ目標性能に 適用されることが多い 1/300, 1/200 を⁴⁾,一棟 を除いて下回るように設計されていた。

表 2 免震層最大層間変位

単位 (cm)		最大	最小	平均
全体	短辺	48.1	22.3	36.5
	長辺	48.9	25.9	36.0
変位依存型	短辺	41.7	28	34.4
	長辺	43.5	30	36.1
速度依存型	短辺	35.7	31.4	33.3
	長辺	36.3	32.4	34.3
併用型	短辺	48.1	22.3	34.1
	長辺	48.9	25.9	36.3

図7 最大層間変形角R1とR2の年代推移

<u>- 89</u> <u>-</u>

3.6 免震化による一次固有周期の伸長

図9に免震層固定時の一次固有周期と免震化 後のレベル2地震動時一次固有周期の関係を示 す。なお、図には短辺、長辺の両方の一次固有 周期をプロットしている。

図9より免震層固定時の一次固有周期は 1.38sから2.51sに分布しており,免震化後のレ ベル2地震動時の一次固有周期は3.66sから 6.18sに分布している。また、短辺、長辺におけ る伸長比率の平均はそれぞれ2.46, 2.38であり, 免震化によって平均して短辺,長辺共に約2.4 倍程度長周期化していることが分かった。また、 免震層固定時の一次固有周期が長くなっても, 免震化後のレベル2地震動時の一次固有周期に 相関関係は見られず4.0sから4.5sに分布してい る。これは一般的な地震波の加速度応答スペク トルは周期4.0s以上では建物の応答は一定で あり⁶, この領域に免震構造建築物の周期を設 定することで高い免震効果を期待できるため, 免震化後の一次固有周期を4.0s近傍に設定し ていると考えられる。

図10に免震装置の減衰特性の分類ごとにお ける免震化による一次固有周期の伸長(免震化 後のレベル2地震動時の一次固有周期を免震層 固定時の一次固有周期で除した値)の棟数分布 を示す。

図10より変位依存型は1.5より大きく3.0以下 の間に分布している。また、速度依存型と併用 型には伸長が3.0を超している事例が確認でき た。伸長が最も大きい事例は併用型に属する 「朝日放送新社屋」であり、これは一次固有周 期が免震層固定時では短辺、長辺それぞれ 1.64s、1.66s、免震化後のレベル2地震動時は短 辺、長辺共に6.18sであるため免震化による一 次固有周期の伸長が大きくなっていた。

4. まとめ

- ・地震層せん断力係数比(レベル2地震動時における建物最上階の最大応答地震層せん断力係数⁵⁾を免震層の最大地震層せん断力係数で除した値)は免震層固定時の一次固有周期が長い程大きく,更に免震層の最大地震層せん断力係数が小さい程大きい。
- ・免震層最大層間変位は免震化後(レベル2地 震動時)の一次固有周期が長い程大きい。免 震装置の分類ごとでは併用型に免震層最大 層間変位が最も大きい事例があった。
- 一棟の事例を除き最大層間変形角R1, R2の 設計クライテリアは1/300, 1/200としていた。
- 一次固有周期は免震化によって平均して約
 2.4倍程度長周期化されていた。免震装置の
 分類ごとでは併用型に一次固有周期の伸長
 が最も大きい事例があった。

図10 一次固有周期の伸長の棟数分布

参考文献

- 日本建築センター:ビルディングレター, No.1 -No.668, 1967.1-2021.7
- 日本建築試総合験所:機関誌 GBRC, Vol.36 No.3-Vol.46 No.3, 2011.7-2021.7.
- 井出翔太,他:CFT造超高層建築物の構造計画に関する 研究-免・制振装置の検討-,日本大学生産工学部第54 回学術講演会公演概要,2020.12
- 日本建築センター:超高層建築物の構造設計実務, 2019.7
- 5) 飯場正紀,他:免震建築物の設計用地震層せん断力係数 に関する検討,建築研究資料 No.162, 2014.8
- 6) 髙山峯夫,他:改訂版4秒免震への道—免震構造設計マ ニュアル—多田英之監修,1997.8