矩形 CFT 柱の耐力低下に関する研究

日大生産工(院)	○今井 皓己	日大生産工	藤本 利昭
日大生産工(院)	大石 琴	日大生産工(院)	助川 海都

1. まえがき

矩形断面を有するコンクリート充填鋼管 (Concrete Filled Steel Tube,以下CFT)構造 の柱材に関する研究^{1)・3)}が継続的に行われてい る。CFT構造には鋼管の座屈後やコンクリート 圧壊後の耐力低下の緩和が特徴として挙げら れるが,これらの研究では耐力低下に着目した 知見は少ない。

そこで本研究ではこれまでに実施した曲げ 実験及び一定軸力下の曲げ実験の試験体15体 の実験結果から変形能力および耐力低下につ いて検討を行う。

2. 実験概要

2.1 試験体概要

試験体形状は支点間距離を900mmに統一し, 試験体両端のエンドプレートを支点,試験体中 央部のダイアフラムを模擬したプレートを加 力点としている。断面形状は150mm×150mm, 150mm×100mm, 150mm×75mmとし長方 形断面については強軸曲げと弱軸曲げの2方向 の5種類の断面とした。実験に使用した鋼材の

STKR400	t	σ_y	σ_u	E_s	\mathcal{E}_s
[5号試験片]	[mm]	[N/mm ²]	[N/mm ²]	[kN/mm ²]	[%]
150 (N0,N20,N30)	4.22	417	496		32.2
100s (N0,N20,N30)	4.10	200	464		94.7
100w (N0,N20,N30)	4.19	362	404	205	34.7
75s (N0,N20,N30)	4.95	410	401		91.0
75w (N0,N20,N30)	4.25	418	481		31.6

表1 鋼材の機械的性質

t:板厚, σ_y :降伏強度, σ_u :引張強度, E_s :ヤング率, ε_s :伸び率

機械的性質を表1に、コンクリートの材料特性 を表2に示す。試験体は一般構造用角形鋼管 STKR400, *F*=33N/mm²の普通コンクリート を使用した。

なお, 試験体名は短辺の長さを示しており, "s"は強軸曲げ, "w"は弱軸曲げ, "N"は軸力比 を表している。軸力比(*NN*₀, *N*₀=_s*A*·*a*_s+_c*A*· *ob*, ここで, *N*:作用軸力, *N*₀: CFT柱の圧縮 耐力, *sA*, *cA*:鋼管, コンクリートの断面積と する。)は0, 0.2, 0.3としており, 断面形状5 種類×軸力比3種類の計15体の試験体を用い た。

2.2 実験方法

図1,2に曲げ実験,一定軸力下の曲げ実験の 載荷方法を示す。

曲げ実験(軸力比0)は2000kN万能試験機を 用いて行い,測定は試験体両端に各2本の計4 本の変位計を用いて試験体の変形を測定した。

一定軸力下の曲げ実験(軸力比0.2, 0.3)は 500kN油圧ジャッキを取り付けた軸力載荷用 フレームを5000kN構造物試験機に組み込み, 軸力を一定に保った状態で実験を行った。測定 は曲げ実験と同様に変位計を設置した。

表2 コンクリートの材料特性

普通コンクリート [F_c =33N/mm ²]	σ_B [N/mm ²]	E_c [kN/mm ²]	е _с [%]	材齢 [日]	
軸力比0	36.3	30.8	0.22	82	
軸力比0.2, 0.3	38.7	31.8	0.21	169	

 $[\]sigma_B$:圧縮強度, E_c :ヤング率, $arepsilon_c$:圧縮強度時ひずみ

Study on the Strength Reduction of Rectangular CFT Columns

Koki IMAI, Toshiaki FUJIMOTO, Koto OISHI and Kaito SUKEGAWA

実験結果

3.1 実験結果概要

実験結果一覧を表3,耐力および部材角の評価方法を図3に示す。表中の最大曲げモーメントの計算値*Mcu*は文献4)の式を用いて求めている。実験値*Meu*は試験機より得られた荷重*Peu*より求めており、軸力比0.2,0.3の試験体については作用軸力*N*と変位*&*によって生じる付加曲 げモーメント(*N8*)を考慮した値としている。

(図3参照)また,限界部材角*R*_uは最大荷重から5%耐力低下した時の部材角としている。

ここで, δ:変位計より得られた変位とし,変 位は局部座屈発生後に部材の変形が非対称に

図3 耐力および部材角の評価方法

なることから,左右各2本の変位計の値から, 大きい方の平均値としている。

3.2 水平力-部材角関係

図4に軸力比0,0.2の試験体,図5に軸力比0.2, 0.3の試験体の水平力・部材角関係を示す。それ ぞれ図の(a)は強軸曲げ,(b)は弱軸曲げを示し ている。図の縦軸は水平荷重*Pe*,横軸は部材角 *R*とし,図中のプロットは最大荷重時の変形角 *R*maxとしている。

図4(a),(b)より,強軸曲げ,弱軸曲げともに 軸力比0の方が最大荷重や*R*maxは大きな結果に なっている。断面形状による比較を行うと軸力 比0では75w-N0を除くと*R*maxは正方形断面よ り小さな値となったが,軸力比0.2では正方形 断面より長方形断面の方が大きな値を示した。 また,軸力比0の長方形断面の試験体4体は最 大耐力発揮後に大きな耐力低下はみられなか ったが,正方形断面に関しては部材角6%で耐 力低下がみられる。これは試験体中央部の加力 プレート近傍に亀裂が生じたためである。

図5(a),(b)より,長方形断面では強軸曲げ, 弱軸曲げともに軸力比0.2の方が最大荷重及び *Rmax*は大きいが,軸力比0.2,0.3では大きな差 異はなく同一の挙動を示している。軸力比0.3 も軸力比0.2と同様に正方形断面より長方形断 面の方が*Rmax*は大きくなった。また,弱軸曲げ に関しては短辺の長さが短いほど*Rmax*は大き くなる傾向がみられた。

試験体	P_{cu}	P_{eu}	P_{eu}/P_{cu}	M_{cu}	M_{eu}	M_{eu}/M_{cu}	R_{max}	R_{u}	N
	[kN]	[kN]		[kN·m]	[kN•m]		[%]	[%]	[kN]
150-N0	276	364	1.32	62.1	81.9	1.32	4.44	6.59	0
100s-N0	194	278	1.44	43.6	62.6	1.44	2.42	7.95	0
100w-N0	142	199	1.41	31.9	44.9	1.41	3.05	7.23	0
75s-N0	179	240	1.34	40.3	54.1	1.34	3.13	6.82	0
75w-N0	105	141	1.34	23.7	31.8	1.34	5.24	7.98	0
150-N20	304	341	1.12	68.4	78.8	1.15	1.20	2.97	352
100s-N20	209	258	1.23	47.0	60.3	1.28	1.93	3.46	249
100w-N20	154	182	1.18	34.6	42.7	1.23	1.56	2.61	251
75s-N20	186	218	1.17	41.9	51.3	1.22	1.94	3.50	250
75w-N20	111	121	1.09	25.0	29.1	1.16	1.74	2.48	221
150-N30	302	330	1.09	67.9	77.4	1.14	1.28	2.49	496
100s-N30	205	245	1.19	46.2	57.8	1.25	1.55	2.66	375
100w-N30	151	173	1.15	33.9	41.4	1.22	1.49	2.20	375
75s-N30	182	208	1.14	41.0	49.3	1.20	1.53	2.74	332
75w-N30	107	108	1.00	24.2	26.8	1.11	1.63	2.24	333

表 3 実験結果一覧

 P_{cu} , P_{eu} : 最大荷重の計算値,実験値, M_{cu} , M_{eu} : 最大曲げモーメントの計算値,実験値

 R_{max} :最大荷重時の部材角, R_u :限界部材角,N:平均作用軸力

3.3 限界部材角

図6に限界部材角 R_u を短辺の長さで比較し たものを示す。(a)は軸力比0の試験体,(b)は軸 力比0.2,0.3の試験体とし、図の縦軸は限界部 材角 R_u ,横軸は短辺の長さとしている。なお、 軸力比0の試験体は軸力比0.2,0.3の試験体に 比べて大きな値を示したため、図6(a)は軸力比 0の試験体のみの検討としている。

図6(a)より,長方形断面は正方形断面より大きな値を示し,短辺100mmでは強軸曲げが,短辺75mmでは弱軸曲げが大きくなった。

図6(b)より、軸力比0.2の試験体の方が限界

部材角は大きな値を示し、曲げ方向では弱軸曲 げより強軸曲げの方が大きな値を示した。軸力 比0.2の強軸曲げでは短辺の長さが短い(フラ ンジの幅厚比が小さい)ほど限界部材角は大き くなっており、弱軸曲げでは短辺の長さが短い (ウェブの幅厚比が小さい)ほど限界部材角は 小さくなった。軸力比0.3では、強軸曲げは軸 力比0.2と同様の傾向を示したが、弱軸曲げで は同様の傾向を示さず、短辺100mmと75mm は同程度の値となった。軸力比0.2、0.3の限界 部材角は強軸曲げ>正方形断面>弱軸曲げと なった。

3.4 耐力低下

(a)耐力低下

図7に耐力低下と短辺の長さ関係を示す。図 の縦軸は耐力低下,横軸は短辺の長さとし,(a) は軸力比0,0.2,(b)は軸力比0.2,0.3としてい る。なお,縦軸の「耐力低下」は図8に示すよ うに縦軸をPdPeu,横軸を部材角Rとした図の 最大荷重点(Peu/Peu)から5%耐力低下した点 (Pu/Peu)の傾きと定義する。

図7(a)より,軸力比0.2の弱軸曲げでは短辺 の長さが短いほど耐力低下は大きくなってい るが,強軸曲げでは大きな差異はない。軸力比 0の長方形断面では短辺75mmの方が耐力低下 は大きい。

図7(b)より,軸力比0.3は軸力比0.2の結果と 同様の傾向を示していることがわかる。軸力が 作用した試験体の場合,弱軸曲げの方が断面形 状による差が顕著になり,強軸曲げでは弱軸曲 げのように大きな差異はない。弱軸曲げでは, 座屈長さ径比(*Id*))が異なるため差が顕著に表 れていると考えられる。

(b)付加曲げモーメントの影響

図9に耐力低下・付加曲げの割合関係を示す。 図の縦軸は耐力低下,横軸は付加曲げの割合と している。なお,横軸の「付加曲げの割合」は 最大曲げモーメントの実験値のうち付加曲げ モーメントが占める割合(*N*&*Mew*)と定義する。

図 9 より付加曲げの割合は短辺の長さが短いほど大きくなっており, 強軸曲げより弱軸曲 げの方が大きい。弱軸曲げでは, 付加曲げの割 合が大きいほど耐力低下が大きくなっている。 一方強軸曲げでは, 付加曲げモーメントが耐力 低下に及ぼす影響は小さいと考えられる。

弱軸曲げかつ短辺の長さが短い方が軸力の 影響を大きく受けることがわかる。

4. まとめ

曲げ実験及び一定軸力下の曲げ実験から得 られた知見を以下に示す。

- ・軸力比0.2, 0.3では最大荷重や*R*_{max}に大きな 差異はない。
- ・限界部材角は軸力比が小さいほど大きくなっており,軸力比0.2,0.3では強軸曲げ>正方形断面>弱軸曲げとなった。
- ・耐力低下は弱軸曲げの方が断面形状による差 異が大きく、短辺の長さが短いほど大きい。
- ・弱軸曲げかつ短辺の長さが短い方が軸力の影響を大きく受ける。弱軸曲げは、座屈長さ径比が異なることが影響していると考えられる。

参考文献

- 長崎ら:コンクリート充填長方形鋼管の構造性能に関する実験的研究-その1 圧縮性状-,日本建築学会大会学術 講演梗概集,pp.1537-1538,2013.8
- 2) 荒井ら:コンクリート充填長方形鋼管の構造性能に関す る実験的研究-その2 曲げ性状-,日本建築学会大会学術 講演梗概集, pp.1539-1540, 2013.8
- 3) 城戸ら:長方形 CFT 柱の圧縮性状に関する研究,日本建築学会大会学術講演梗概集,pp.1395-1396,2017.8
- (4)藤本ら:断面形状を考慮した角形 CFT 柱の設計式,日本 建築学会技術報告集, Vol.15, No.31, pp.757-760, 2009.10

- 86 -