角形 CFT 柱の変形能力に関する実験的研究

-座屈長さ径比の影響-

日大生産工(院)	○助川	海都	日大生産工	藤本	利昭
日大生産工(院)	今井	皓己	日大生産工(院)	大石	琴

まえがき

現在, CFT部材は柱材として広く用いられ, その優れた剛性および耐力から鉄骨梁との合 成構造として,オフィスビルの主要な構造シス テムを担っている。オフィスビルにおいて, CFT柱は一般階(基準階)では比較的短い柱(短 柱)となるが,最下階においては,比較的階高 が高くなる場合や吹き抜けなどにより,細長い 柱(長柱)となる場合が多い。

現在のCFT造の設計は、日本建築学会「コン クリート充填鋼管構造設計施工指針」 10 (以下、 CFT指針と略称)等に基づいて行われるが、柱 区分は座屈長さ径比 L_k/D (L_k :座屈長さ、D: 断面せい)により決定されている。軸耐力およ び曲げ耐力の算定に当たっては、断面の局部座 屈が支配的になる短柱 ($L_k/D \leq 4$)、部材の全 体座屈が支配的になる長柱 ($12 < L_k/D \leq 30$)、 短柱と長柱の中間の中柱 ($4 < L_k/D \leq 12$)と定 義し、異なる評価式が適用される。

一方, CFT柱の変形能力を表す限界部材角 R_u は,元来 $L_k/D \Rightarrow 6$ の実験データに基づき評価 式が構築されている。そのため、 $L_k/D > 10$ とな る細長い柱に対しては低減係数を乗じる形で 評価することとなっており、 $L_k/D = 10$ を境に評 価式が不連続になっているという課題がある。

そこで本研究では,試験体の座屈長さ径比と 軸力比に焦点を当て,正方形断面CFT柱の変形 能力を明らかにすることを目的として,曲げ実 験および一定軸力下の曲げ実験を行った。

2. 実験計画

2.1 試験体概要

表1に試験体一覧を示す。試験体は、□-150 ×4.5の正方形鋼管にコンクリートを充填した CFT柱とした。部材長さLは、座屈長さ径比 (L_k/D)が6.0となるよう900mmを基本とし、 軸力比 (N/N_0 , N:作用軸力, N_0 : CFT柱の 軸圧縮耐力)は0, 0.2, 0.3の3種類を設定した。 また、部材長さによる比較のため軸力比0.2, 部材長さをL=1250mm, 1600mmとした試験 体を計画した。試験体名称の最初の数字は「部 材長さ」、"N"以降の数値は「軸力比(%)」を 表している。

表2に使用した鋼管の材料試験結果を示す。 鋼管は一般構造用角形鋼管STKR400を使用し、 材料試験片は5号試験片とした。

表3にコンクリートの材料特性を示す。試験 体コンクリートの設計基準強度は $F_c = 33$ (N/mm²)とした。

表2 鋼材の材料特性

	板厚	降伏強度	引張強度	ヤング係数	伸び率
\sim	<i>t</i> (mm)	σ_y (N/mm ²)	σ_u (N/mm ²)	E_s (kN/mm ²)	e (%)
STKR400	4.22	417	496	205	32.2

	10 -	1270	1.024	1 11111工	
	設計基準強度 F_c (N/mm ²)	圧縮強度 $\sigma_B(N/mm^2)$	ヤング係数 E_c (kN/mm ²)	圧縮強度時ひずみ $arepsilon^{(\%)}$	材齢 (日)
軸力比 0		36.3	30.1	0.22	82
軸力比0.2 軸力比0.2	33	38.7	31.8	0.21	169
11日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1					

ま? コンクリートの材料性性

计除什么开	部材長さ	軸力比	板厚	幅	せい	幅厚比	座屈長さ径比		
武駛1本石 小	L(mm)	N/N_0	t(mm)	B(mm)	D(mm)	B/t	L_k/D		
900-N0	900	0					6.00		
900-N20	900	0.2					6.00		
900-N30	900	0.3	4.22	150	150	35.5	6.00		
1250-N20	1250	0.2					8.33		
1600-N20	1600	0.2					10.67		

表1 試験体概要

Experimental Study of the Deformation Capacity of Square CFT Columns - Effect of Buckling Length-Diameter Ratio -

Kaito SUKEGAWA, Toshiaki FUJIMOTO, Koki IMAI, and Koto OISHI

2.2 実験方法

a)曲げ実験概要

図1に軸力比0の試験体の実験方法を示す。 実験には2000kN万能試験機を使用した。実験 方法は柱を90度回転させた状態での3点曲げ 試験とし,試験体両側のエンドプレート部をピ ンローラー支持とし,試験体中央部のダイアフ ラムを模擬したプレートを介して加力した。

変位計測は、試験体両端に各2本取り付けた 変位計①~④(図3参照)で試験体両端の支点 と加力点間の鉛直方向の変位差 δ を計測し、変 位 δ から部材角 $R(=\delta(L/2))$ を求めた。また試験 体上下面には1軸のひずみゲージを各4枚、試 験体側面には3軸のひずみゲージを各2枚取り 付け、各部のひずみを測定した。

b)ー定軸カ下の曲げ実験概要

図2に軸力比0.2, 0.3の試験体の実験方法を 示す。一定軸力下の曲げ実験も曲げ実験と同様 に3点曲げ試験とした。実験に際しては,軸力 載荷用のフレームを5000kN構造物試験機内 にセットし,フレームに設置した500kN油圧ジ ャッキにより軸力を一定に保った状態で試験 体中央部のプレートを介して加力を行った。

各種の測定は、曲げ実験の測定項目に加え、 図3に示した⑤,⑥の変位計により、部材全長 の軸変位を測定した。

図1 曲げ実験概要

図2 一定軸力下の曲げ実験概要

実験方法および測定方法

3.1 実験結果概要

表 4 に実験結果の一覧を示す。表中の終局曲 げ耐力の計算値 $_{c}M_{u}$ は、文献 2)に基づき鋼管 角 R 部を考慮して求めた値であり、最大荷重 の計算値 $_{c}P_{u}$ は、 $_{c}M_{u}$ を部材長さ Lの 1/4 で除 して求めた値である。

終局曲げモーメントの実験値 $_{e}M_{u}$ は, 付加曲 げモーメントを含む値とし,式(1)~(3)によっ て算定した。

$${}_{e}M_{u} = {}_{e}M_{uP} + {}_{e}M_{uN} \tag{1}$$

$$_{e}M_{uP} = \frac{_{e}P_{u} \cdot L}{4} \tag{2}$$

$$_{e}M_{uN} = N \cdot \delta \tag{3}$$

ここで、 $_{e}M_{uP}$:水平力(せん断力)による 終局曲げモーメント実験値、 $_{e}M_{uN}$:軸力による 付加曲げモーメント実験値、 $_{e}P_{u}$:最大荷重、 δ :鉛直方向の変位である。

 R_{max} は最大荷重時の部材角であり,変位 δ を 部材長さ Lの 1/2 で除して求めた。 R_u は限界 部材角であり、荷重が最大荷重以降に 95%ま で低下した時の部材角 1の値を示している。な お部材角の評価にあたっては、局部座屈発生後、 変形が非対称となる 3ことから、変位計から得 られた結果より左右で大きい方の値を用いて 求めた。また、今回の実験では実験装置の都合 などから部材角 6%に達した時点で実験を終 了している。

鉛直方向変位計①~④

水平方向変位計⑤,⑥

図3 変位計位置(平面図)

了一些人们的问题,我们就能够了。 在1991年,我们就是我们的问题,我们就是我们的问题,我们就能够不能能够不能。										
	部材長さ	最大荷重			最大曲げモーメント				部材角	
		実験値	計算値		実験値	実験値	計算値		実験値	実験値
試験体名称	L (mm)	$_{e}P_{u}$	$_{\rm c}P_{\rm u}$	$_{e}P_{u}/_{c}P_{u}$	$_{e}M_{uP}$	$_{e}M_{u}$	$_{c}M_{u}$	$_{e}M_{u}/_{c}M_{u}$	R_{max}	R_{u}
		(kN)	(kN)		$(kN \cdot m)$	$(kN \cdot m)$	(kN \cdot m)		(%)	(%)
900-N0		364	276	1.32	81.9	81.9	62.1	1.32	4.44	6.59
900-N20	900	341	304	1.12	76.7	78.8	68.4	1.15	1.20	2.97
900-N30		330	302	1.09	74.3	77.4	67.5	1.15	1.28	2.49
1250-N20	1250	240	219	1.10	75.0	78.0	68.4	1.14	1.53	3.22
1600-N20	1600	184	171	1.08	73.6	79.4	68.4	1.16	1.96	3.70

3.2 荷重·変位関係

図4(a)には、部材長さが900mmと等しく、軸 力比が0、0.2、0.3と異なる試験体を、図4(b)に は、軸力比が0.2と等しく、部材長さが900mm、 1250mm、1600mmと異なる試験体の荷重-変 位関係を比較して示している。図の縦軸は荷重 $_{e}P$ 、横軸は変位 δ であり、図中の"□"は各試 験体の最大荷重 $_{e}P_{u}$ の点を示している。

図4(a)より,軸力比が小さい順に最大荷重 _eP_uは大きい結果となり,最大荷重時の変位は 軸力比0が大きく,軸力比0.2,0.3では大きな差 異は生じなかった。軸力比0.2,0.3では最大荷 重後に耐力低下がみられるが,軸力比0は最大 荷重直後に急激な耐力低下は見られず,変位約 25mmから耐力低下がみられた。

図4(b)より,部材長さが長くなるに従い,初 期剛性,最大荷重が小さくなるが,最大荷重時 の変位は大きくなっている。また最大荷重後の 耐力低下は,全ての試験体で確認できるが,そ の耐力低下の傾きは部材長さが短いほど大き くなっている。

(a) 軸力比 (N0, N20, N30) 部材長さ900mm

図4 荷重-部材角関係

3.3 変形能力

CFT柱の変形能力を表す限界部材角R_uは, CFT指針式の以下の評価式が適用される。

$$R_{u} = \frac{\gamma_{r}}{0.15 + 3.79 \frac{N}{N_{0}}} \cdot \frac{t}{D} \cdot \beta$$
(4)
$$\beta = 1.0 - \frac{F_{c} - 40.3}{566} \le 1.0$$

ここでCFT指針の評価式は, $L_k/D \Rightarrow 6$ の比較 的短い柱の実験データに基づき構築され,限界 部材角の影響因子である鋼管の幅厚比, コンク リート強度, 軸力比がパラメータとなる式であ り,これらが大きくなるほど限界部材角が小さ くなるという物理現象を表している。

また柱の長さによる影響は、 $L_k/D > 10$ となる細長い柱に対しては低減係数 γ_r を乗じる形で評価することとなっており、 $L_k/D \leq 10$ の場合 $\gamma_r=1.0$ 、 $L_k/D > 10$ の場合 $\gamma_r=0.8$ となっている。よって $L_k/D=10$ を境に評価式が不連続になっているということがわかる。

表5に実験により得られた各試験体の限界部 材角と、CFT指針の評価式による値を比較して 示す。なお本実験では、試験体1600-N20が $L_k/D>10$ であり、 $\gamma_r=0.8$ とした値は()内に示 している。

表5 変形能力 (実験値と評価式の比較)

	/	試験体名称						
		900-N0	900-N20	900-N30	1250-N20	1600-N20		
ъ	実験値	6.59	2.97	2.49	3.22	3.70		
R _u (%)	CFT指針	18.8	3.10	2.19	3 10	3.10		
		10.0			5.10	(2.48)		

また図5は、縦軸を限界部材角の実験値、横 軸をCFT指針式の限界部材角として比較した 図である。なおCFT指針式の値は座屈長さ径比 による低減は考慮していない。また図中には、 文献4)に示された既往の実験データを座屈長 さ径比で分類して"□"と"■"でプロットし ている。

CFT指針の限界部材角評価式の構築に用い られた軸力比は0.12~0.80となっていること, 表5より,軸力が作用していない試験体900-N0 は,実験値に対しCFT指針の評価式が過大評価 してしまうことから,今回は軸力比0の試験体 は検討から除外する。 表5より, 試験体900-N30, 1250-N20, 1600-N20の試験体は, 実験値が計算値を上回り安全 側の評価となった。しかしながら, 900-N20は 実験値が計算値を下回り, 危険側の評価となっ ている。安全側の評価となった試験体の中でも, 1600-N20のパラメータを用いたCFT指針式に 低減係数 γ_r =0.8を適用すると実験値との差異 は約1.2%と大きく, 安全側の評価となった。

図5より、既往の実験データに対し、CFT指 針の評価式は $L_k/D \leq 10$ の実験値を平均的に評 価していること、 $L_k/D > 10$ の実験値は評価式 を下回る試験体が多いことがわかる。

一方で本実験結果は,試験体900-N30,1250-N20,1600-N20の試験体は,実験値と評価式 との対応が良い。

図6に、軸力比と限界部材角実験値を示す。 図中には、文献4)に示された既往の実験データ を座屈長さ径比(柱区分)で分類して座屈長さ 径比が小さい順に"〇、●、●"でプロットし ている。また、CFT指針では、部材の変形能力 を確保する目的で柱軸力の上限値($N/N_0 =$ 0.7)が規定されている。

図6より,既往の実験データは軸力比が低く なるに従って限界部材角実験値が大きくなる 右下がりの傾向がみられ,特に座屈長さ径比が 12を上回る(長柱)でその傾向が顕著である。 また,限界部材角実験値1%を下回る試験体も 既往の実験データに数体確認できるが軸力比 0.5を下回る全ての試験体で限界部材角実験値 が1%を上回っている。

本実験の値においても既往のデータと同様 の傾向がみられ,限界部材角実験値の最小値は 900-N30の2.19%であった。

4. まとめ

軸力比と部材長さを変数とした,曲げ実験お よび一定軸力下の曲げ実験から以下の知見が 得られた。

- ・最大荷重における耐力比は、軸力が加わらな い試験体は32%、軸力が加わる試験体は約 10%計算値を上回った。付加曲げモーメン トを含むと耐力比は、約15%計算値を上回 りより安全側の評価となった。
- ・初期剛性は部材長さが短いほど大きく,軸力 比での違いはなかった。
- ・今回実験を行った試験体の限界部材角は, 2%以上を確保できている
- ・限界部材角の実験値は軸力比が小さいほど, 部材長さが長いほど大きくなった。CFT指針 は軸力比において低軸力比(今回の実験では, 軸力比0) で過度に値が大きくなり,十分に 評価ができない。また,座屈長さ径比につい ても $L_k/D = 10$ を境に低減係数が考慮され ているが不連続となっており,更なる検討が 必要と考えられる。

参考文献

- 日本建築学会:コンクリート充填鋼管構造設計施 工指針,第2版, p.42, p.244, 2008
- 藤本利昭,田中宏和,平出亨,竹中啓之:断面形 状を考慮した角形 CFT 柱の設計式,日本建築学会 技術報告集, Vol.15, No.31, pp.757-760, 2009.10
- 加藤勉,秋山宏,北沢進:局部座屈を伴う箱型断 面部材の変形,日本建築学会論文報告集,pp.71-76, 1978.6
- 4) 藤本利昭,田中宏和,出水俊彦,西内晃二,上田 弘樹,福元敏之:コンクリート充填鋼管柱の構造 性能に関する調査研究,日本建築学会技術報告集, No.16, pp. 129-134, 2002.12

