SMW 芯材の杭頭撤去工法に関する研究

ー曲げ実験結果及び考察ー

1. まえがき

山留工事において、SMW工法の芯材として 使用したH形鋼の杭頭撤去を求められる場合 がある。そこで二つのH形鋼を直列に繋ぎ、H 形鋼を貫通させた棒鋼に緊張力を加えること で一体化する杭頭撤去工法(以下、本工法とす る)を提案した。

本工法の適用に際しては、一体化した二つの H形鋼の曲げ性能に関する知見がないことから、H形鋼と棒鋼の役割及び相互関係を解明するため、曲げ実験を行った。

本研究では、曲げ実験の結果を報告するとと もに、一体化したH形鋼の構造性能について考 察する。

2. 実験概要

2.1 試験体概要

本実験は、長さ2mの2本のH形鋼 $(H-300\times150\times6.5\times9)$ を4本の $\Phi20$ の棒鋼で接続した試験体 2体(以下、H-1、H-2とする)を用いて、実験を行った。

H-1とH-2の構成を図1に示す。試験体断面 及び棒鋼の位置を図2に示す。H形鋼には端部 のフランジ内側にアングルと棒鋼の貫通穴を 設けたプレートを溶接し,四隅に棒鋼を貫通させた。棒鋼の両端にはネジ切りを行い,ナットで締め付けることで一体化した。

試験体には、H形鋼、棒鋼共にSS400材を使用 した。表1に棒鋼の材料試験の結果を示す。な お、H形鋼の材料試験は行っていない。

2.2 実験方法

曲げ実験を行う前に、試験体を一体化するために、棒鋼に約50kNの緊張力を導入した。試験体の一端はナットがH形鋼に溶接されているため、もう一端のナットをトルクレンチにより回すことで、棒鋼に軸力を導入した。

曲げ実験の加力及び計測図を図3に示す。実験は、島津5000kN構造物試験機を使用し、支点間距離を3000mmとした3等分点載荷とした。

また、実験は各試験体に対し、強軸と弱軸両方の構造性能を確認するため、強軸、弱軸の各方向に加力を行った。加力順序については、試験体H-1はH形鋼、棒鋼共に弾性範囲内で、先に強軸に加力を行った後、弱軸に加力を行った。試験体H-2は、先に弱軸加力を行い、次に棒鋼が降伏するまで強軸に加力を行った。

4.5 255.5 H-B-4 (H-B-8) H-B-3 (H-B-7) 75 37.5 (H-B-6) H-B-5 (H-B-5) 37.5 (H-B-5) 37.5 (H-B-5) 37.5 (H-B-6) 単位:mm

表1 棒鋼材料試験結果

直径 Φ(mm)	降伏強度 $\sigma_y(N/mm^2)$	引張強度 σ_t (N/mm ²)	ヤング係数 E(kN/mm²)	伸び率 ε(%)
19.96	309	458	213	31

図1 試験体構成図

Study on Removal Method for Pile-head of the Pile Core of SMW

— Experimental results and discussions of Bending Test. —

Yong HE, Toshiaki FUJIMOTO and Ryosuke TAKEI

計測は、図3に示すように、加力点、中央点及び支点に各2本合計6本の変位計を用いた。中央部分は加力の進行とともに生じる隙間に影響されないように、接続部分の左右でH形鋼に変位計1個ずつを設けている。また、H形鋼のA-A断面に、上面と下面のフランジに4枚ずつ、ウェブに6枚のひずみゲージを貼り付け、H形鋼のひずみを測定した。棒鋼については、B点

の位置で1本に2枚、合計8枚のひずみゲージを 貼り付け、棒鋼の軸力変化を測定した。

3. 実験経過及び実験結果

図4(a), (b)に強軸と弱軸の荷重ーたわみ関係を示す。図の縦軸は試験機による鉛直荷重P, 横軸は試験体中央部分変位計2と3の平均値と両端変位計5と6を用いて求めた試験体の相対たわみ δ を示しいている。

図5(a), (b)は試験体H-1の強軸, 及び弱軸とし, 図6(a), (b)は試験体H-2の強軸, 弱軸の棒鋼の軸 カーたわみ関係を示す。縦軸は曲げを受けた上 部2本及び下部2本の棒鋼軸力の合計値Pbとし、 図4と同様、横軸はたわみδを用いている。

3.1 荷重-たわみ関係

図4(a)により、強軸加力ではH-1は約P=60kNまで、一定の剛性を保っているが、その荷重を 超えると、剛性が低下した。H-2はH-1とほぼ同 様な関係であるが、剛性変化点は明確ではなか った。この剛性低下点は、目視により、H形鋼 の中央接続部分に隙間が確認された。なお, H-2は棒鋼が降伏するまで加力したため、剛性低 下の段階の次に、約P=110kNで棒鋼の降伏によ る剛性低下も確認された。

弱軸側に関しては、棒鋼が降伏するまで加力 していないが、図4(b)により、両試験体ともP=15~20kNで、剛性低下が生じている。

初期の剛性を保った段階では、強軸側は同一 荷重でH-1のたわみがH-2より小さい。また、弱 軸側では、H-2のたわみがH-1のより小さい。

2体の試験体は、H-1が強軸→弱軸、H-2が弱 軸→強軸と、加力の順序が異なるため、僅かな 差異が認められるものと考えられる。

3.2 棒鋼軸力とたわみ関係

図5、図6より、上下棒鋼の軸力差は加力の進 行とともに、大きくなった。圧縮側となる断面 の上部の棒鋼の軸力は低下する。引張側となる 断面の下部の棒鋼の軸力は高くなっている。な お、試験体の曲げ剛性が低下する時点で、棒鋼 の軸力の変化も大きくなった。

4. 考察

4.1 検討方法

試験体が荷重を受けた時にH形鋼に作用す る応力を明確にするため、剛性低下が生じる前 の初期剛性段階にあるデータを用いて考察を 行う。

曲げ実験を行うとき,試験体に作用する外力 は荷重のみとなるが、一体化されたH形鋼に対 しては、棒鋼の軸力による圧縮力も受けている。 そこで、試験体の剛性が低下する前の1点を選 び、その時点での荷重、棒鋼の軸力、たわみを 表2に示す。

表2より、試験体の剛性が低下する前におい ても,上下棒鋼の軸力が変化していたが,すべ ての棒鋼の軸力合計値はほとんど変化してい ない。

表2に示す荷重と棒鋼の軸力に基づいて計算 したH形鋼のひずみ理論値1,とひずみゲージ により得られた実験値を比較し、図7、図8に示 す。図7(a)、(b)は試験体H-1、H-2の強軸を、図 8(a), (b)は弱軸を示している。図の縦軸は断面 の位置、横軸はひずみ ϵ を表している。

図7、図8より、実験値と理論値は同様な傾向 を示しているが、若干な差異が認められる。こ れは強軸, 弱軸においても, H-1とH-2は荷重と 棒鋼の軸力以外にもほかの力が影響されてい ると考えられる。

丰つ 宝龄估一些

		たわみ δ(m m)	荷重 P(kN)	軸力合計値 <i>P_b</i> (kN)		
				上棒鋼	下棒鋼	合計値
強軸	H-1	0.00	0	93.3	93.9	187
		1.10	32	87.1	100.1	187
	H-2	0.00	0	94.4	94.5	189
		1.11	27	89.5	99.8	189
弱軸	H-1	0.00	0	89.0	94.9	184
		3.23	7	82.0	101.3	183
	H-2	0.00	0	91.8	94.2	186
		3.31	8	84.7	100.7	185

4.2 力のつりあいの検討

図7, 図8ではひずみに若干の差異が認められ ることから、図5、図6及び表2の上下棒鋼の軸 力差により,棒鋼が曲げモーメントに抵抗して いることが考えられる。そこで、H形鋼と棒鋼 の断面内の力のつりあいを考える。

断面中央の棒鋼による軸力方向力, 荷重Pに よる曲げモーメント,及び上下棒鋼の軸力差に よる曲げモーメントを考えると、剛性が低下す る前、H形鋼のひずみは以下の式で計算できる。

$$\varepsilon = \varepsilon_h + \varepsilon_m \tag{1}$$

$$\varepsilon = \varepsilon_b + \varepsilon_m \tag{1}$$

$$\varepsilon_b = \frac{P_b}{EA} = \frac{P_{b \perp} + P_{b \perp}}{EA} \tag{2}$$

$$\varepsilon_m = \frac{M}{EI} y \tag{3}$$

$$M = P_{b \pm} \times a - P_{b \mp} \times a + \frac{1}{2} \times P \times \frac{l}{3}$$
 (4)

ここで、 ε : 求める位置のひずみ、 ε_b : 棒鋼の 軸力によるH形鋼のひずみ、 ε_m :曲げモーメン トによるH形鋼のひずみ、 P_b :棒鋼の軸力合計 値, A: H形鋼の断面積, E: ヤング係数,

M: H形鋼に作用する曲げモーメント、I: H形 鋼の断面二次曲げモーメント, y:H形鋼中心 点からの距離, $P_{b \perp}$: 上の棒鋼の軸力, $P_{b \top}$: 下 の棒鋼の軸力、a:棒鋼とH形鋼中心点との距離、 *P:* 荷重, *l*: 支点間距離である。

式(1)~(4)に計算し、得られた理論値2と実測 された実験値の一覧を図7、図8に示す。すべて の試験体は強軸も弱軸も計算値と実験値の差 は僅かである。

以上のように,加力を行う前,導入した棒鋼 の軸力により、H形鋼は軸方向の圧縮力を受け ているため、圧縮(マイナス)のひずみが出る。 導入の力により、棒鋼は引張られることで、H 形鋼は圧縮され、両者が影響を受ける。

試験体の剛性が低下するまでの段階では,棒 鋼の軸力合計値の変化は僅かであるが,上下部 分棒鋼の軸力差が出てくる。その差により,僅 かであるが、H形鋼に対する曲げモーメントが 作用する。

加力を続けると,上部棒鋼の軸力が曲げモー メントにより若干ゆるみ,一方下部棒鋼は軸力 が増加し、曲げに抵抗するためである。

5. まとめ

本工法により,一体化したH形鋼の構造性能 に関して,実験により以下の知見が得られた。

- 一体化した試験体は初期の剛性を保つ段階, 接続部が離間し、剛性が低下する段階、次に 棒鋼が降伏し, さらに, 剛性が低下するが, たわみが20mmを超えても耐力低下しない ことが分かった。
- 棒鋼の軸力は試験体の性能に関わり,曲げを 受けた上部棒鋼の引張力が弱まり,下部棒鋼 の引張力が高まることが分かった。
- H形鋼の剛性が低下する前段階では, 棒鋼の 軸力合計値は変わっていないことが分かっ
- H形鋼の曲げ性能は荷重, 棒鋼の軸力, 棒鋼 の軸力差による曲げモーメントによる影響 を受けることが分かった。

150

H形鋼のひずみ分布(強軸)

(a) H-1

60 40 ひずみゲージ位置(mm) 20 0 -20 実験値 理論値1 0 -40 理論値1 理論値2 0 理論値2 3.31 -60 100 0 -100 -200 -300 -400 ひずみε(mm)

(b) H-2

図8 H形鋼のひずみ分布(弱軸)