ナノクリスタル磁性材料の高周波特性

日大生産工(院) ○佐久間 穂崇 日大生産工 矢澤 翔大 新妻 清純

1. まえがき

近年の次世代自動車では、電装化の進展や GPSの情報量増加、他車間での通信等といった 技術が多く導入されている。そのため、搭載さ れる電子部品の多くに小型化、高効率化、高信 頼性が求められる。自動車に多く搭載される磁 性部品のフェライトはキュリー温度が低いた め、モーターなど高温環境で使用することが困 難である。また、他車間やGPSなどデータの通 信を行う際に大きなノイズが発生してしまう など問題がある。

本研究では、フェライトに代わり、高温度環 境でも磁気特性の劣化が少ない、小型化が可能 で磁気特性が良い、といった基準を満たせる材 料と言われているナノクリスタル材料に着目 した。ナノクリスタル材料は、優れた比透磁率 とキュリー温度を保有しており、高温度環境に 対する磁気特性の劣化が小さく車載用のコア として使用することが期待されている。ナノク リスタル材料を実用化するため、材料の熱処理 を行い透磁率の変化から最適な熱処理条件を 求めた。

2. 実験方法および測定方法

コア状に巻かれたナノクリスタル材料(東静 工業株式会社製)に電気炉を用いて熱処理を行 った。コア材はリボン状のナノクリスタルの薄 帯を巻いて作製している。熱処理温度Taを 500℃から580℃、熱処理時間を1分から180分 の間で熱処理を行い、電気炉内の雰囲気は大気、 冷却速度は自然冷却とした。処理したコアをイ ンピーダンスアナライザ(HIOKI社製 型番 IM3570)でインダクタンスLを測定後、周波 数特性図を作成し、最適な熱処理温度、熱処理 時間を検討した。

熱処理は急激に温度を上昇させると目標と する熱処理温度を超える(オーバーシュートを 起こす)可能性があるため、Ta-100 C =Ta²Cまで30分程度で上昇させた後、その温度 を30分保持し、その後50分もしくは約1時間で Ta²Cに温度を上昇させ熱処理温度Ta²Cを保持 し、二段階で熱処理を行った。温度上昇方法を Fig.1に示す。

Fig.1 温度上昇方法

コアの寸法測定を行い、平均磁路長 ℓ と断面 積 S を求め、インダクタンス L を測定する ことでコアの比透磁率を算出した。コアの寸 法を測定することで、厚さ t、内径 2a:内半 径 a、外径 2b:外半径 b を求める。これらの 要素より、平均磁路長 ℓ と断面積 S を以下の 式より求めた。

> 平均磁路長 $\ell = 2 \times \pi \times \frac{a+b}{2}$ = $\pi \times (a+b)$ [mm]

> > 断面積 $S = t \times (b - a)[m^2]$

a:内半径 b:外半径 t:厚さ

このとき、コアはリボン状の薄帯を巻いて 作製しているため、コア内部に隙間があり、 計算から質量を求めると実際の質量とのズレ が生じる懸念があるため、熱処理をした後の コアの質量を測定し、修正を加えた。計算式 を以下に示す。

見かけの質量 $M = S \times \ell \times \rho$

測定質量 M '= S '× ℓ × ρ

ρ:密度[g/cm³]

- High Frequency Characteristics of Nanocrystal Magnetic Materials

Hotaka SAKUMA ,Syouta YAZAWA, Kiyozumi NIZUMA

$$\frac{M}{S} = \frac{M'}{S'}$$
$$S' = \frac{M' \times S}{M}$$

透磁率 μ を求めるために、インダクタンス L を求める式を解いた。それに質量の補正を 組み込んだ。その式を以下に示す。

$$\mathcal{A} \lor \mathcal{B} \not \mathcal{P} \mathcal{B} \lor \mathcal{R} L = \frac{\mu S}{\ell} N^{2}$$
$$L = \mu \frac{N^{2}}{\ell} S^{-\epsilon}$$
$$\mu = L \frac{\ell}{N^{2} \times S^{-\epsilon}}$$
$$= L \frac{\ell}{N^{2}} \times \frac{M}{M^{-\epsilon} \times S}$$
$$= \frac{L \times \ell^{2} \times \rho}{N^{2} \times M^{-\epsilon}}$$

N:巻き数

この透磁率 μ を真空の透磁率 μ_0 [= 1.25×10⁻⁶]で割ることにより、比透磁率 μ_r を求めた。その式を以下に示す。

$$\mu = \mu_r \mu_0 \downarrow \emptyset$$
$$\mu_r = \frac{\mu}{\mu_0}$$

以上の式から比透磁率 µrを求めた。

3. 実験結果

温度変化による周波数特性の図をFig.2.1に、 時間変化による周波数特性の図をFig.2.2に示 す。本研究は、企業との共同研究であるため今 回の報告では詳細な数値は記載しないものと する。ナノクリスタルのコア材を熱処理した際 の100[kHz]での熱処理温度と時間変化による 比透磁率の周波数特性を図にした。縦軸が比透 磁率、横軸がそれぞれ処理温度・処理時間であ る。Fig.2.1より処理温度を変化させたところ 550℃で比透磁率が最大となった。Fig.2.2では、 処理時間を変化させたところ45分で比透磁率 が最大になった。これらのことから最適な熱処 理条件は処理温度550℃、処理時間45分である ことが分かった。

Fig.2.1温度変化による周波数特性 (処理時間30分一定)

Fig.2.2 時間変化による周波数特性 (処理温度550℃一定)

4. まとめ

本研究では、ナノクリスタルのコア材を熱処 理し、比透磁率から100[kHz]での最適な熱処 理条件を検討した。結果から最適な熱処理条件 が処理温度550℃、処理時間45分であることが わかった。

参考文献

- 「微細結晶Fe-Al-Si-M-B(M=V,Nb,Ta)合 金薄膜の構造と軟磁気特性」 渡辺 洋、 斎藤 準、高橋研 日本応用電磁気学会誌 1965-1968
- 吉沢 克仁・山内 清隆:「超微細結晶粒 組織からなるFe基軟磁性 日本金属学会 誌 53-2 (1989) P.241-248
- 3) 井上 明久・牧野 彰宏:「アモルファス 層からの超高強度および硬質磁性ナノ結 晶粒子の析出」まてりあ 37-5 (1998) P.371
- 新宮 秀夫:「アモルファス金属の結晶化」
 15-7 (1980) P.491-492

<u>- 264</u> --