非弾性構成則による熱可塑性樹脂の非線形力学挙動の推定

日大生産工(院)	○染宮 聖人	日大生産工	平山 紀夫
サイバネットシステム(株)	山本 晃司	名古屋大	松原 成志朗
		東北大 IRIDeS	寺田 賢二郎

1. 緒言

近年,生産性やリサイクル性に優れた繊維強 化熱可塑性プラスチック (FRTP; Fiber Reinforced ThermoPlastic)の研究開発が活発に 行われている. このFRTPのマトリックス樹脂 である熱可塑性樹脂は,時間や温度によって材 料特性が変化する非線形特性を有するため, FRTPは異方的な非線形力学挙動が顕著に表れ る.したがって、FRTPを構造部材に適用する際 には、マトリックス樹脂である熱可塑性樹脂の 非線形力学挙動を計測し, 適切な材料構成則を 適用して、材料パラメータを同定する必要があ る. 従来から、マトリックス樹脂の非線形力学 挙動を推定する研究はなされているが1),特定 の条件下で計測された単軸引張試験のデータ を用いて、塑性やクリープなどといった単一の 材料構成則により非線形特性を表現する例が ほとんどである.

そこで本研究では、様々な構造部材への適用 が期待されている現場重合型熱可塑性アクリ ル樹脂の非線形力学挙動を研究対象とし、複数 のひずみ水準下での単軸繰り返し負荷-除荷 試験を行った.そして、この非線形力学挙動が 弾塑性、クリープ・損傷の3つ構成則で表現で きると仮定し、最適化手法を用いて複合構成則 の非線形材料パラメータを同定した.

2. 現場重合型熱可塑性アクリル樹脂

一般的な熱可塑性樹脂の多くは、溶融粘度と 溶融温度が非常に高いため、強化繊維への十分 な含浸が困難であった.この問題を解決するた めに、現場重合型熱可塑性アクリル樹脂が開発 された²⁾.この現場重合型アクリル樹脂は、主 剤であるElium190に対して3wt%の有機過酸化 物を添加することで、MMAモノマーから PMMAポリマーへとラジカル重合する.この現 場重合型熱可塑性アクリル樹脂の可使時間は、 有機過酸化物を添加してから10時間と非常に 長く、室温では粘度が100mPa・sと非常に低粘 度であることから,FRTPのマトリックス樹脂 として様々な分野で用いられている.成形条件 は,圧力4MPa,加熱温度35℃で3時間,加熱温 度80℃で1時間の条件下でプレス成形を行い, 試験片を作成した.

3. 単軸繰り返し負荷-除荷試験

試験機は、恒温槽付き精密万能試験機(㈱島 津製作所、オートグラフAG-I)を用いた. 試験 速度は、1.0,0.5,0.1mm/minの3水準とし、除荷 時の試験速度は負荷時と同じ速度に設定した.

繰り返し負荷試験では,試験片中央部に接着 したひずみゲージのひずみが破断ひずみの 65%になるまで負荷を行った後,荷重がゼロに なるまで除荷を行った.そして,ひずみが破断 ひずみの75%,90%になるまで引張荷重による 負荷と除荷を繰り返す試験を行った.ここで, 基準とした破断ひずみは,試験速度1mm/min, 室温下で単軸引張試験を実施したときの破断 ひずみ3.24%とした.

4. 非弹性構成則

マトリックス樹脂の非線形力学挙動を表現 するために、本研究では、実試験のひずみ領域 が微小であると仮定し、等方性弾塑性・クリー プ・損傷複合構成則を用いた³⁾.全ひずみεは、 次式に示すように、弾性ひずみε^eと塑性ひずみ ε^e、クリープひずみε^eに加算分解されるものと する.

$$\varepsilon = \varepsilon^e + \varepsilon^p + \varepsilon^c \tag{1}$$

熱可塑性樹脂の速度非依存の塑性変形は, von-Misesの降伏関数を用いた関連流れ則と等 価硬化則を採用した.硬化関数と流れ則を次式 に示す.

$$\sigma_{y}\left(\alpha^{p}\right) = \sigma_{0}^{y} + H\alpha^{p} + R_{0}\left(1 - \exp\left(-\beta\alpha^{p}\right)\right) \quad (2)$$

Estimation of Nonlinear Mechanical behaviour in - Situ Polymerizable Thermoplastic resin by inelastic constitutive law.

Masato SOMEMIYA, Norio HIRAYAMA, Koji YAMAMOTO, Seishiro MATSUBARA and Kenjiro TERADA.

$$\dot{e}^p = \dot{\gamma}_p N \tag{3}$$

ここで、 σ_0 は初期降伏応力、H, R_0 , β は硬化パ ラメータ、 γ は塑性乗数、Nは流れベクトルであ る.また、クリープひずみ速度 ε_c についても、 流れベクトルNを用いて式(3)の関連流れ則と 同様に定義した.クリープの発展則については、 次の関数形を定義した

$$\dot{\overline{e}}^c = C_1 \left(\overline{\sigma}\right)^{C_2} \exp\left(-\frac{C_3}{T}\right) t^{C_4} \tag{4}$$

ここで, C_1 , C_2 , C_3 , C_4 はクリープの材料パラ メータ, Tは絶対温度, tは時間, σ はvon-Misesの 相当応力である.

また,損傷モデルは熱可塑性樹脂の内部損傷 によって,弾性係数のみが式(5)の関数形に従 って低減されるモデルとした.

$$D(\overline{\varepsilon}) = d_1 (\overline{\varepsilon}_{\max})^{d_2} \qquad 0 \le D \le 1 \quad (5)$$

ここで、Dは弾性係数の損傷具合を表す損傷変数、 d_1 、 d_2 は損傷パラメータ、 $\overline{\epsilon_{max}}$ は材料が過去に経験した最大の等価ひずみである.

また,内部損傷によって低減された弾性係数 Eは初期弾性係数 E_0 を用いて次式のように定義 した.

5. 同定結果

複合構成則の材料パラメータの同定には、差分 進化法アルゴリズムを使用した.同定した材料 パラメータを Table1 に示す.また、Table1 の 同定値を用いて、計算した3つの非線形力学挙 動を Fig.1 に示す. Fig.1 より、試験速度が大き いほど最大応力値が高く、除荷後の残留ひずみ が小さいという粘塑性挙動を適切に表現する ことができた.一方で、3つの試験速度におけ る実験値と解析値をそれぞれ比較すると、全体 的な非線形力学挙動を再現できているものの、 Fig.1(a)からわかるように、解析で求めた除荷 後の残留ひずみは、実験値よりも0.001%小さ い値であり、再現性に乏しい結果となった.こ の再現性については今後の課題としたい.

6. 結言

本研究では,現場重合型熱可塑性アクリル樹 脂の単軸繰り返し負荷-除荷試験の非線形力 学挙動から等方性弾塑性・クリープ・損傷複合 構成則の材料パラメータを同定した.その結果, 材料パラメータで熱可塑性樹脂の非線形力学 挙動を良好に再現することが可能であった.

Table1 Identification of material parameters.

Parameter	Symbol	Value
Initial tensile modulus (MPa)	Ε	2750
Poisson's ratio (-)	v	0.350
Initial yield stress (MPa)	σ_0^y	19.22
Hardening parameter (MPa)	Н	303.8
	R_{0}	400
	β	150.1
Creep parameter	C_2	10.799
	C_3	-0.100
	C_4	15351
Damage parameter	d_{l}	18.00
	d_{2}	1.114

Fig.1 Comparing numerical results with experiments.

参考文献

- 寺田賢二郎,濱名康彰,平山紀夫,繊維強 化プラスチックの粘弾性マルチスケール 解析手法,日本機械学会論文集 A編,75巻, 760号,(2009), pp.1674-1683.
- 有浦芙美,アクリル系現場重合型熱可塑性 コンポジットマトリクス,強化プラスチッ クス,65,8,(2019),pp.329-334.
- 3) 松原成志朗, 弾塑性・クリープ・損傷複合 モデルによる繊維強化プラスチックの分 離型マルチスケール解析, 日本計算工学会 論文集, 2014巻(2014).