三成分系モルタルに関する研究

日大生産工(院) 〇寺嶋 天志 日大生産工 鵜澤 正美

1. 緒 言

高炉セメントは環境負荷低減に貢献できる セメントとして知られ, 広く公共工事などのコ ンクリート構造物として使用されている. 本研 究はこの高炉セメントを超える環境負荷低減 を実現するコンクリートの開発を目標にして おり、その方策として①セメント量のさらなる 低減,②ポゾラン活性や水和活性のある混和材 を大量使用する,2つの方針で研究を進めてい る. これによって得られたコンクリートを High Volume Binder Concrete, 略して HVBC と 命名した. 高炉セメントは特にマリンコンクリ ートの分野でも多用されている. 耐海水性が高 いと一般に言われており, 高炉スラグ微粉末 (以下 BFS と略記)が潜在水硬性を発現し硬化 体を高強度化することで緻密性を上げ,水密性 を向上させることが主因といわれている.

一方,フライアッシュ(以下 FA と略記)は火力発電所で発生する燃焼灰である.セメントに混和した場合,ポゾラン反応による強度増進が期待できる. FA は我が国においては、東日本大震災の影響より石炭火力発電に頼るところが多く 5, その用途拡大の検討は重要である.

高炉セメントは製品用途として 65℃の蒸気 養生による促進養生を行うのが一般的である. 蒸気養生による高炉セメントの研究は多くあ るが, さらにこれに FA を添加した研究例は今 のところ見出だされていない. さらに C-S-H の 生成が, セメント, BFS, FA と段階的に進むた め, セメント材料科学的にも興味深い材料配合 となる.

本研究は、「従来の蒸気養生条件がそのまま 適用できるか確認する」、「セメントの最低配 合量を圧縮強度によって探索する」,「耐海水性を検討する」という目的で行った.

2. 実験概要

使用材料として、セメントは普通ポルトランドセメント、BFS はエスメント (石膏なし)、FA (II種) を使用した. JIS R 5201 に準拠し、セメント標準砂 (S) と水道水 (W)、セメント (C) に内割で BFS、FA を表 2 に示す 9 種類配合した. 減水剤は使用していない. 供試体は40×40×160mm の角柱型とした.

2.1 **蒸気養生における最適温度条件の探索** 表 1 に示す配合のうち, FA 含有率 10%の供試 体を対象として実験を行った. 練り混ぜ後, 24

表 1.各供試体の配合比とCO₂排出量 (各試料には同一量の珪砂を含む)

	`				
No.	C(%)	BFS(%)	FA(%)	CO₂排出量 (g/I)	相対値
1	60	40	0	262.7	100
2	60	30	10	260.9	99.3
3	60	20	20	259.2	98.6
4	50	50	0	225.5	85.8
5	50	40	10	223.9	85.2
6	50	30	20	222.3	84.6
7	40	60	0	188.1	71.6
8	40	50	10	186.7	71.1
9	40	40	20	185.6	70.6

表 2. 供試体の配合表

No.	C(g)	FA(g)	BFS(g)	W(g)	S(g)
1	270.0	0.0	180.0		
2	270.0	45.0	135.0		
3	270.0	90.0	90.0		
4	225.0	0.0	225.0		
5	225.0	45.0	180.0	225.0	1350.0
6	225.0	90.0	135.0		
7	180.0	0.0	270.0		
8	180.0	45.0	225.0		
9	180.0	90.0	180.0		

Research on mortar of three components

Takashi TERASHIMA, Masami UZAWA

時間湿空養生を行い完全に硬化させてから脱型. これを図1に示す温度条件で蒸気養生し,養生庫内を40,35,30℃まで放冷させた.その後,温度20℃,湿度約60%で14日間気中養生を行い,圧縮強度試験を行った.

2.2 蒸気養生の圧縮強度

表 2 に示す配合で 9 種類の供試体を作製, 硬化, 脱型, 蒸気養生を行った後 30℃まで放冷し上記と同様の条件で気中養生を行った. 気中養生の材齢はそれぞれ 1, 7, 14, 28 日とした. その後, 圧縮強度を測定した.

2.3 耐海水性

表2に示す9種の供試体を3組作製,硬化,脱型,蒸気養生を行った後、3組をそれぞれ7,14,28日の気中養生を行い、海水浸透面以外の面にエポキシ樹脂を塗布して実験用海水(塩分濃度10%)に沈めた.28日後に取り出し、海水浸透面に対し垂直に割裂し断面に硝酸銀水溶液を噴霧して,海水浸透面からの変色部の長さを測定した.

3. 実験結果

3.1 蒸気養生における最適温度条件の探索

図2は供試体番号2,5,8の供試体につい て,蒸気養生槽から40℃,35℃,30℃以下で 取り出した場合の圧縮強度を示した結果であ る. いずれの供試体も35℃以上で取り出した 場合に強度が大きくして低下している. これ は供試体を高温の蒸気養生槽から室温の気中 に取り出した際に生じる温度応力の影響で, 供試体内部に微細なひび割れが生じることが 原因であると考える. また養生終了温度 35℃ から 40℃間について BFS 含有率で比較した場 合, BFS30%と 40%については大きな変化がな いのに対して、BFS50%配合の供試体は強度低 下が見られた. BFS はガラス質であるためセ メントに比べて熱膨張係数が大きく 4), 温度変 化により硬化体内に引張応力が生じクラック が発生するため強度低下を招いたと推察して

いる.これを踏まえ、今後の研究で蒸気養生を 行う場合の養生槽からの取り出し温度は 30℃ 以下にすることとした.

3.2 蒸気養生の圧縮強度

図3~図5は9種の供試体についてセメント 含有量 60,50,40%の3水準で圧縮強度を示し たグラフである. 出荷材齢 14 日を基準に考察 すると、まず BSF40%で FA が 0%の場合が市 販の高炉セメント B 種と同等となる. 概ね 58N/mm²の強度を発現している. FA 添加量を 増やすと強度は低下し10%で52 N/mm²,20% では 43 N/mm²となった. これを基本にセメン ト配合量を減らすと、図 4 はセメン配合量が 50%の場合であるが、FA0%の時の圧縮強度は 51 N/mm²と FA10%配合の時とほぼ同等の圧縮 強度を示している. FA 添加量を増やすと圧縮 強度は低下する傾向は図3と同じである. さら にセメント量を減じたセメント量 40% (図 5) では、FA0%の時の圧縮強度は 46 N/mm² と低 下したが材齢28日では出荷目標強度の50

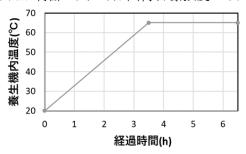


図1. 蒸気養生槽内の温度変化

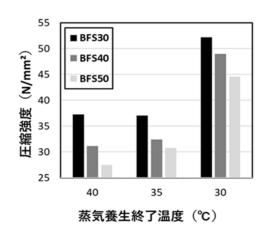


図 2. 圧縮強度と蒸気養生終了温度 (取り出し温度)

 N/mm^2 *超える結果が得られている. また FA の含有量 $0\sim10\%$ 間と $10\sim20\%$ 間で比較すると,後者の方が顕著に圧縮強度の低下が見られた.

3.3 耐海水性試験

図 6~8 は 9 種の供試体の耐海水性試験の結 果を 7, 14, 28 日の気中養生期間別にまとめた グラフである。養生期間で比較をすると長期材 齢ほど浸透長さが短くなっており、耐海水性が 向上している. また, BFS の活性が見える 14 日養生では、セメント及び BFS の含有量に関 わらず浸透長さはほぼ一定であった. 対して, FA の活性が見える 28 日養生では、セメント及 びFA含有量に応じて浸透長さにバラツキがあ ることから、含有量による耐海水性への影響は BFS<FA であると考えられる.28 日時点での見 解では、セメント50%含有の供試体については FA 含有量に関わらず浸透深さに大きな差が見 られなかったことから、長期使用を考えると耐 海水性の観点からはセメント含有量は 50%が 適切とした.

本研究から得られた最大の成果としては、製品用途である蒸気養生条件においては、セメント量を 40%にまで低下させても適度な圧縮強度が得られたことである。これは新しい知見であり、セメント量を 40%とした場合には、高炉セメント B 種に比べて約 30%の CO2の低減が実現できる(表1). すなわち HVBC の構想は、SDGs の観点から土木・建築業界における重要な研究であり、まだ十分な検討をしていないが実現の可能性がある研究と考えている。圧縮強度が発現できることが判明すれば、それを短期で発現させる方策を考えていく計画である。耐海水性については EPMA を用いた拡散係数の測定までを視野に入れている。

4. まとめ

1) 蒸気養生取り出し温度について、35℃以上で取り出した場合に大幅な強度低下が見られた. これは BFS の熱膨張係数が大きいため

である. 取り出す際には 30℃以下まで放冷する.

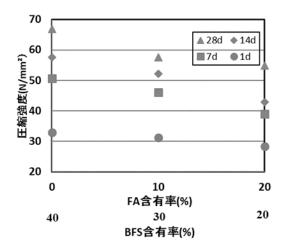


図3. セメント含有率60%の圧縮強度

図 4. セメント含有率 50%の圧縮強度

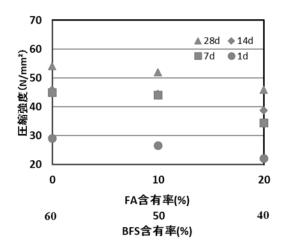


図 5. セメント含有率 40%の圧縮強度

2) セメント含有量で比較した場合,いずれの配合についても FA 含有量 20%で大きな強度低下が見られたことから,HVBC 最適ることが HVBC では重要である.

配合は FA0~10%である.

- 3) セメント含有量を 40%まで低下させても 適度な強度発現が得られている. この配合 は高炉セメント B 種に比較して約 30%の CO₂排出量の低下となる (表 1.参照).
- 4) 耐海水性について、長期材齢ほど耐海水性の向上が見られた。含有量による耐海水性への影響は含有量によるバラツキも考慮して BFS<FA であった。C50%含有では FA含有量によるバラツキがなかったことから、28日養生の時点ではセメント含有量50%が最適であると考える。

参考文献

- 1) セメントの常識, セメント協会, (2017).
- 2) 菅林恵太, 社会資本 LCA に基づいた建設 工事を対象とする環境影響評価, こうえい フォーラム, 第 22 号, pp.61-67, (2014).
- 3) 土木学会,循環型社会に適合した FA コンクリートの最新利用技術-利用拡大に向けた設計施工指針試案-,コンクリートライブラリー132, pp.304, (2010).
- 4) 細田暁ほか, BFS 微粉末を用いたコンクリートの力学的特性に対する微視的温度応力の影響, 土木学会論文集, 63 巻 4 号, pp.549-561, (2007).
- 5) 日本フライアッシュ協会, 石灰灰ハンドブック第6版, pp. I-1, (2015).
- 6) 世森裕女佳,日本大学大学院生産工学研究 科土木工学専攻修士論文,(2017).

最後に

本研究は産学共同研究成果の一部である. コンクリート製品における配合や加熱養生条件には未解明な点も多く, 本研究で種々の観点で改善提案をしていきたい.

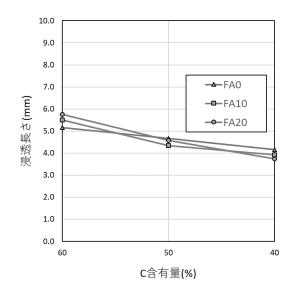


図 6.7 日養生した供試体の塩分浸透

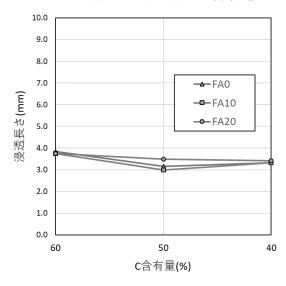


図 7.14 日養生した供試体の塩分浸透

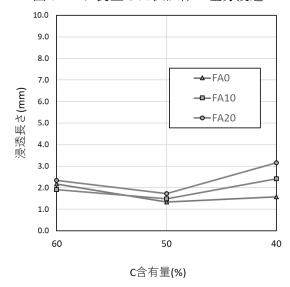


図 8.28 日養生した供試体の塩分浸透