# 矩形 CFT 柱の曲げ性状に関する研究

# - 終局耐力に関する設計式の検討-

日大生産工(学部) 〇大石 琴 日大生産工 藤本 利昭 日大生産工(院) 三浦 智美 日大生産工(院) 今井 皓己 日大生産工(学部) 助川 海都

#### まえがき

コンクリート充填鋼管(Concrete Filled Steel Tube,以下CFTと略記)構造は,鋼管にコ ンクリートを充填した構造であり,軸圧縮力を 受けると膨張するコンクリートを鋼管が外側 から拘束しているため,圧縮耐力,曲げ耐力, 変形性能を増大させるコンファインド効果が 期待できる<sup>1)</sup>。

そのCFT柱に使用される角形鋼管は主に溶 接組立箱形鋼管と冷間成形角形鋼管の2種類が あり,特に溶接組立箱形鋼管は大断面が可能に なることから大規模な建築物の柱に多く適用 されている。

更に、溶接組立箱形鋼管は、平板を溶接して 製作されるため、断面の縦と横の比や、フラン ジとウェブを異なる板厚で製作でき、合理的な 断面設計が可能になる。しかし、現在のCFT造 の設計指針<sup>20</sup>では正方形断面が対象とされてお り、長方形断面に関しては「設計者が適宜判断 して使用すること」と記述されているだけであ る。また長方形断面を対象とした終局耐力式も 報告されている<sup>30</sup>が、その計算式の力学的意味 は明示されていない。

一方で,設計自由度が増し,断面設定の幅が 広がることにより,合理的な断面を設定するた めには,設計者がCFT断面の性質を充分理解す ることが重要となる。

そこで本研究では,設計における技術資料と するため,文献<sup>3)</sup>を参考に,終局耐力式を明示 し,その力学的意味を示すこととした。

## 2. 終局耐力式

「コンクリート充填鋼管設計施工指針」<sup>20</sup>で は、CFT短柱の終局耐力を鋼管部分と充填コン クリート部分に分け、一般化累加で算定するこ ととされている。一般化累加耐力は、終局耐力 求めることであり、終局時の充填コンクリート と鋼管の中立軸が一致した時のCFT断面の全 塑性モーメントに等しくなる。

#### 2.1. 記号の定義

ここでは、正方形と長方形、フランジとウェ ブで異なる板厚の鋼管を用いたCFT断面に適 用できるよう、表1に示す通り、幅とせい、板 厚をフランジとウェブで区別した記号を用い て軸方向力および曲げモーメントを受ける CFT短柱の終局耐力式を明示することとした。

 $\sigma_y$  $\sigma_{\scriptscriptstyle B}$  $\sigma_y$ CFT 断面 B鋼管の断面幅 D 鋼管の断面せい  $B_c$ コンクリートの断面幅  $D_c$ コンクリートの断面せい 鋼管ウェブの板厚  $t_w$ 鋼管フランジの板厚  $t_{f}$ 降伏強度  $\sigma_y$ コンクリートの圧縮強度  $\sigma_B$ コンクリートの圧縮縁から  $x_n$ 中立軸までの距離

#### 表1 記号の定義

# 2.2. 鋼管部分の終局耐力式

a) 鋼管の軸圧縮耐力

鋼管断面は、その力学的な役割から、フラン ジとウェブに分けて考える。鋼管の軸圧縮耐力 は、断面積に降伏強度を乗じて求まるフランジ とウェブそれぞれの軸圧縮耐力を足し合わせ ることで求める。圧縮力を正とした時、軸圧縮 耐力は以下の式になる。

Study on Flexural Behavior of Rectangular CFT Columns — Investigation of Design formula of Ultimate strength— Koto OISHI, Toshiaki FUJIMOTO, Tomomi MIURA, Koki IMAI and Kaito SUKEGAWA

1-10

$$N_{sf} = 2Bt_f \cdot \sigma_y = 2A_f \cdot \sigma_y \tag{1}$$

$$N_{sw} = 2t_w (D - 2t_f)\sigma_y = 2A_w \cdot \sigma_y \qquad (2)$$
  
$$N_{su} = N_{sf} + N_{sw}$$

$$= 2\sigma_y \{Bt_f + t_w (D - 2t_f)\}$$
(3)  
$$= 2\sigma_y (A_f + A_w)$$

ここで、 $N_{sf}$ : 鋼管のフランジ部分の軸耐力、  $N_{sw}$ : 鋼管のウェブ部分の軸耐力、 $N_{su}$ : 鋼管の 軸耐力、 $A_f$ : フランジの断面積(=  $Bt_f$ )、 $A_w$ : ウ ェブの断面積(=  $t_w \cdot (D - 2t_f)$ )を示す。

## b) 鋼管の最大曲げ耐力

最大曲げ耐力は,軸力が0の時(中立軸が断面 せいの中央にある時)であり,曲げモーメント は重心に作用する圧縮合力と引張合力によっ て生じる。

$$M_{sf} = Bt_f(D - t_f)\sigma_y = A_f \cdot d_{sf} \cdot \sigma_y \qquad (4)$$
$$M_f = \frac{t_w}{(D - t_f)^2}\sigma_f$$

$$M_{SW} = \frac{1}{2} \cdot (D - t_f) \, \delta_y$$

$$= \frac{A_w}{2} (D - 2t_f) \sigma_y$$
(5)

$$M_{smax} = M_{sf} + M_{sw}$$
  
=  $\sigma_y \{Bt_f (D - t_f) + \frac{t_w}{2} (D - 2t_f)^2\}$  (6)

$$= \sigma_y (A_f \cdot d_{sf} + A_w \cdot d_{sw})$$

ここで、 $M_{st}$ : 鋼管のフランジ部分の最大曲 げ耐力、 $M_{sw}$ : 鋼管のウェブ部分の最大曲げ耐 力、 $M_{su}$ : 鋼管の最大曲げ耐力、 $d_{sf}$ : フランジ の重心間距離(= $D - t_f$ )、 $d_{sw}$ : ウェブの重心間 距離(= $(D - 2t_f)/2$ )を示す。

c) 中立軸がウェブ内
$$(0 \le x_n \le D - 2t_f)$$
の時

曲げ耐力はフランジとウェブが, 圧縮耐力は ウェブ部分のみが負担するため以下のように 示される。

$$N_{s} = 2t_{w} \{ 2x_{n} - (D - 2t_{f}) \} \sigma_{y}$$
(7)

$$M_{s} = 2t_{w} \cdot x_{n} \left\{ \left( \frac{D}{2} - t_{f} \right) - \frac{x_{n}}{2} \right\} \cdot 2\sigma_{y} \qquad (8)$$
$$+M_{sf}$$

$$= 2t_{w} \cdot x_{n} (D - 2t_{f} - x_{n})\sigma_{y} + A_{f} \cdot d_{sf} \cdot \sigma_{y}$$

ここで、 $N_s$ :鋼管の圧縮軸力、 $M_s$ :軸力 $N_s$ が作用したときの鋼管の終局曲げ耐力を示す。

#### d) 鋼管の耐力曲線

図2に鋼管の耐力曲線を示す。-*N<sub>sw</sub>*, *N<sub>sw</sub>*は, 中立軸がフランジ内側にある時で,曲げモーメ ントはフランジが,軸力はウェブが負担する点 を表している。中立軸が断面の中心(*N* = 0)あ る場合,全断面が曲げモーメントを負担し,鋼 管の最大曲げ耐力に達する。-*N<sub>sw</sub>*から*N<sub>sw</sub>*の 間は、フランジ部分が曲げモーメントのみを負 担し、ウェブ部分の曲げモーメントと軸力の負 担割合で耐力曲線が変化する。



図1 鋼管の耐力曲線

## 2.3. コンクリート部分の耐力曲線 a) 軸圧縮耐力

軸圧縮耐力は、断面積に圧縮強度を乗じて求める。

$$N_{cu} = (B - 2t_w) (D - 2t_f) \sigma_B$$
  
=  $A_c \cdot \sigma_B$  (9)

ここで、 $N_{cu}$ : コンクリートの最大圧縮耐力,  $A_c$ : コンクリートの面積(=  $(B - 2t_w)(D - 2t_f)$ )

$$N_{c} = (B - 2t_{w}) \frac{(D - 2t_{f})}{2} \sigma_{B}$$
$$= \frac{B_{c} \cdot D_{c} \cdot \sigma_{B}}{N_{cu}}$$
(10)

$$= \frac{1}{2}$$

$$M_{c} = (B - 2t_{w}) \frac{(D - 2t_{f})}{2} \left\{ \left( D - 2t_{f} \right) - \frac{(D - 2t_{f})}{2} \right\} \cdot \frac{\sigma_{b}}{2}$$

$$= (B - 2t_{w}) \left( D - 2t_{f} \right)^{2} \cdot \frac{\sigma_{B}}{8}$$

$$= B_{c} \cdot D_{c}^{-2} \cdot \frac{\sigma_{B}}{8}$$
(11)

ここで、 $N_c$ : コンクリートの圧縮軸力、 $B_c$ : 充填コンクリートの幅(= $B - 2t_w$ )、 $M_c$ : コン クリートの曲げ耐力、 $D_c$ : 充填コンクリートの せい(= $D - 2t_f$ )を示す。

c) 中立軸が断面内( $0 \le x_n \le (D - 2t_f)$ )の時 曲げ耐力は以下のように示される。

$$N_{c} = (B - 2t_{w}) \cdot x_{n} \cdot \sigma_{B}$$
(12)  

$$M_{c} = (B - 2t_{w})x_{n} \left\{ \frac{(D - 2t_{f})}{2} - \frac{x_{n}}{2} \right\} \sigma_{B}$$
(13)  

$$= (B - 2t_{w})x_{n} (D - 2t_{f} - x_{n}) \frac{\sigma_{B}}{2}$$
(13)  

$$= {}_{c}B \cdot x_{n} \cdot (D_{c} - x_{n}) \frac{\sigma_{B}}{2}$$
(13)

<u>-36</u>

d)コンクリートの耐力曲線

図2にコンクリートの耐力曲線を示す。コン クリートは圧縮にのみ耐えることができるた め圧縮を正とした場合,耐力曲線は軸力が正の 部分に表れ,軸力が最大圧縮耐力(*New*)の半分 の時,最大曲げ耐力(*Memax*)となる。



図2 コンクリートの耐力曲線

## 2.4. CFT断面の耐力曲線

2.2, 2.3よりCFTの耐力は以下のように示される。

a) 軸耐力

$$N_0 = N_{su} + N_{cu} \tag{14}$$

b) 最大曲げ耐力

コンクリートが最大曲げ耐力に達した時で 以下のように示される。

$$N_{max} = \frac{N_{cu}}{2} \tag{15}$$

$$M_{max} = M_{smax} + M_{cmax} \tag{16}$$

c) 中立軸がウェブ断面内( $0 \le x_n \le (D - 2t_f)$ ) 曲げ耐力は以下のように示される。

$$N = N_{s} + N_{c}$$
(17)  

$$= 2t_{w} \{2x_{n} - (D - 2t_{f})\}\sigma_{y}$$
  

$$+ (B - 2t_{w}) \cdot x_{n} \cdot \sigma_{B}$$
  

$$= 2t_{w}(2x_{n} - D_{c})\sigma_{y} + B_{c} \cdot x_{n} \cdot$$
  

$$\sigma_{B}$$
(18)  

$$= 2t_{w} \cdot x_{n} (D - 2t_{f} - x_{n})\sigma_{y}$$
  

$$+ Bt_{f} (D - t_{f})\sigma_{y}$$
  

$$= x_{n} (D - 2t_{f} - x_{n}) \cdot$$
  

$$\left\{2t_{w}\sigma_{y} + (B - 2t_{w})\frac{\sigma_{B}}{2}\right\}$$
  

$$+ Bt_{f} (D - t_{f})\sigma_{y}$$

$$= x_n (D - x_n) \left\{ 2t_w \sigma_y + \frac{\sigma_B}{2} \right\}$$
(19)  
+  $A_f d_{sf} \sigma_y$ 

ここで, *Nu*: CFT の終局圧縮耐力, *Mu*: CFT の終局曲げ耐力を示す。

#### d) CFTの耐力曲線

図 3 に CFT の耐力曲線を示す。CFT では, 軸力が $-N_{sw}$ ,  $-N_{sw}+N_{cu}$ の時が,中立軸がフ ランジ内側にある時で,フランジは曲げモーメ ントを,ウェブとコンクリートは,軸力を負担 することになる。CFT も最大曲げ耐力はコン クリートが最大曲げ耐力に達する時で $N = N_{cu}/2$ である。



図 3 CFT の耐力曲線

# 3. 検討

以上で明示した式を用いて長方形断面と正 方形断面の場合の終局耐力について考察する。

#### 3.1. 比較対象

正方形断面の幅とせい,正方形断面の板厚, 降伏強度,コンクリートの圧縮強度は一般的に 使用される値として文献<sup>2)</sup>の設計例の値を用 いた。長方形断面は,幅とせいが1:2の比率にな るような長さとし,板厚は,正方形断面の鋼管 とコンクリートの面積が同じになるように求 めた。表1に比較対象概要と終局耐力式で求め た最大曲げ耐力計算値*M*<sub>4</sub>を示す。またCFT造 の設計指針<sup>2</sup>より,軸力の制限値(0.7*N*<sub>6</sub>)を求め た。

| 表 2 | 比較対象概要 |
|-----|--------|
|-----|--------|

| 比較対象     | 板厚<br>[mm] |                | 幅<br>[mm] | せい<br>[mm] | 断面積<br>[mm <sup>2</sup> ] |        | 降伏・圧縮強度<br>[N/mm <sup>2</sup> ] |            | 計算最大曲げ耐力<br>[kN・m] | 0.7 <i>N</i> <sub>0</sub><br>[kN] |
|----------|------------|----------------|-----------|------------|---------------------------|--------|---------------------------------|------------|--------------------|-----------------------------------|
|          | $t_f$      | t <sub>w</sub> | В         | D          | $A_s$                     | $A_c$  | $\sigma_y$                      | $\sigma_B$ | $M_u$              | N                                 |
| 650×650  | 25.0       | 25.0           | 650       | 650        | 62500                     | 360000 | 325                             | 48         | 6059               | 26315                             |
| 920×460S | 23.5       | 23.5           | 460       | 920        | 62651                     | 360549 | 325                             | 48         | 7949               | 26368                             |
| 920×460W | 23.5       | 23.5           | 920       | 460        | 62651                     | 360549 | 325                             | 48         | 4612               | 26368                             |

#### 3.2. 検討結果

図4に終局耐力式を用いて算定した鋼管, コ ンクリート, CFTそれぞれの軸力・曲げモーメ ントによる耐力曲線を示す。なおa)が正方形断 面, b)長方形断面の強軸曲げ, c)が長方形断面 の弱軸曲げの場合の耐力曲線である。

表2より最大曲げ耐力を比較すると長方形断 面の短辺がフランジとなる強軸曲げの時,一番 大きい値となり,長方形断面の短辺がウェブと なる弱軸曲げの時,一番小さい値となった。ま た,正方形断面のMuに対して長方形断面の強 軸曲げの際のMuは1.75倍,弱軸曲げの際は 0.55倍であった。

図4-b), c)より,長方形断面において弱軸曲 げの時よりも強軸曲げの時の方が鋼管,コンク リート,CFTともに耐力が大きくなった。

図4-d)より,耐力曲線を比較すると,長方形 断面の弱軸曲げ,正方形断面,長方形の強軸曲 げの順で耐力曲線が大きくなった。

また,制限軸力値(0.7*N*<sub>0</sub>)はa),b)では,ウェ ブ部分が軸力を負担しているが,c)の弱軸曲げ ではフランジも軸力を負担する領域に入って おり,長方形断面の制限軸力は今後検討の余地 がありそうである。

## 4. まとめ

- ・鋼管は軸力が0の時, コンクリートは軸力が 軸圧縮耐力の1/2の時, 最大曲げ耐力となる。
- ・CFTの最大曲げ耐力は、軸力がコンクリートの軸圧縮耐力の1/2の時に生じる。その最大曲げ耐力は、充填コンクリートと鋼管それぞれの最大曲げ耐力を足し合わせることで求められる。
- ・長方形断面において強軸曲げの耐力曲線は 鋼管、コンクリート、CFTにおいて弱軸曲げ よりも大きくなる。
- ・断面積が同じであれば、耐力曲線および最大 曲げ耐力は正方形断面よりも短辺がフラン ジの強軸長方形断面の方が大きくなる。

参考文献

- 松井千秋:コンクリート充填鋼管構造CFT 構造の性能と設計,株式会社オーム社, pp.43-48,2009
- 社会法人日本建築学会:コンクリート充填 鋼管構造設計施工指針,第2版,pp.244, 338-343,2008
- 藤本利昭,田中宏和,平出亨,竹中啓之:断 面形状を考慮した角形CFT柱の設計式,日 本建築学会技術報告集,第15巻,第31号, pp.757-760,2009.10





b) 920×460S



c) 920×460W



## d) CFTの耐力曲線

## 図4 終局耐力式による耐力曲線