磁場環境下におけるせん断流れが MR 流体内の粒子構造に与える影響

日大生産工(院) 〇田中 亜宗 日大生産工 安藤 努 PIA 小池 修,東大環安セ 辰巳 怜, NIMS 廣田 憲之

1. はじめに

磁気粘性流体 (Magnetorheological Fluid) (以下MR流体)は、磁場の影響を受けるこ とで含有磁性粒子がチェーン状の構造体を形 成して溶液自体の見かけ粘度が変化すること が知られ、この見かけ粘度の変化を利用して 各種ブレーキ、クラッチ、ダンパ、ショック アブソーバへの応用が期待されている1). その 一方で,安定したレオロジー特性を得るため にベースオイルの開発研究も近年行われてい る²⁾ MR流体中の磁性粒子は微小で挙動を視 認することは難しいため、数値計算を用いて MR流体中の粒子が形成したチェーン構造の 状態と見かけ粘度について、せん断速度と磁 場強度をパラメータとした観察が行われてい る. せん断速度の上昇はチェーン構造の傾斜 の増大と分裂を発生させ、その結果として見 かけ粘度を低下させ、この見かけ粘度は分散 媒の粘度に収束することが報告されている³⁾.

前述のようにMR流体の運用が期待されて いる環境では,静止状態だけではなくせん断 流れが生じている場合が考えられる.現在実 施されている研究では,一本のチェーン構造 の傾きや状態変化とその結果と相関する見か け粘度の変化について観察したものであり³, 複数本のチェーン構造を対象としたものでは ない.本研究では磁場印加の中で,多数の磁 性粒子がチェーン構造を形成する過程と,せ ん断流れの中で形成された複数チェーンの構 造変化について観察し,見かけ粘度との相関 について議論できる数値モデルの構築を行っ た.

2. 支配方程式

計算対象とする MR 流体は微粒子分散溶液 であり Newton 流体として扱い,連続の式 (1) および揺動 Navier-Stokes 方程式 (2)に従う⁴⁾. $\nabla \cdot \boldsymbol{v} = 0$ (1) $\frac{\partial v}{\partial t} + (v \cdot \nabla)v = -\frac{1}{\rho}\nabla p + \frac{\mu}{\rho}\nabla^2 v + \frac{1}{\rho}\nabla \cdot S + \Phi \alpha$ (2) ここで, t:時間 [s], v:流体の速度ベクトル [m/s], ρ :溶媒の密度 [kg/m³], p: 圧力 [Pa], μ :溶媒の粘性係数 [Pa·s], S: 揺動ストレステ ンソル [N/m²], Φ :粒子相関数である. α :粒子 の加速度ベクトル [m²/s]は, v^{p} :粒子の速度ベク トル [m/s]を使用して,下式 (3)で表される.

 $\alpha = \frac{v^p - v}{\Delta t} + (v \cdot \nabla)v - \frac{\mu}{\rho} \nabla^2 v - \frac{1}{\rho} \nabla \cdot S$ (3) 微粒子分散液中の粒子の並進運動は Newton の 運動方程式に従う. 並進運動の方程式を式 (4)に 示す.

 $m\frac{dV}{dt} = F^{c} + F^{v} + F^{h} + F^{m}$ (4)

ここで、m: 粒子の質量 [kg], V:粒子の速度ベ クトル [m/s], F^c : 粒子に働く接触力ベクトル [N], F^v : 粒子の van der Waals カベクトル [N], F^h : 粒子に働く流体力ベクトル [N], F^m : 磁 気双極子相互作用力[N]である. 粒子の回転運動 は Euler の運動方程式 (5) に従う.

$$I\frac{a\omega}{dt} = T^{c} + T^{h} + T^{m} + T^{H}$$
(5)

ここで、I:粒子の慣性モーメント $[kg \cdot m^2], \omega$: 粒子の角速度ベクトル $[rad/s], T^c$: 粒子に働く 接触トルクベクトル $[N \cdot m], T^h$: 粒子に働く流 体トルクベクトル $[N \cdot m], T^m$: 磁気双極子相互 作用トルク $[N \cdot m], T^H$: 印加磁場による磁気ト ルク $[N \cdot m]$ である. 磁場に関する力とトルクにつ いては参考文献⁵⁰を参考にして、数値モデルに 組み入れた.

3. 数值実験

本数値実験ではニッケル粒子を含有する MR 流体を想定した. 粒子, 壁および溶媒の物 性値を Table.1 に示す.また,計算領域は粒子 径 *d* = 2.5 µm を基準として(*x*, *y*, *z*)=(7*d*, 7*d*, 3*d*) とした.粒子の磁化率は飽和磁化となる磁場 *B*

Influence of shear flow under magnetic field on particle structures in magnetorheological fluid

Aso TANAKA, Tsutomu ANDO, Osamu KOIKE, Rei TATSUMI and Noriyuki HIROTA

= 0.6 T 時の磁化率 490.1×10³ A/m とした.

	Physical property	Value [-]
Particle, Wall	Density [kg/m ³]	8.90×10 ³
	Young's modules [Pa]	200.0×10^{9}
	Poisson ratio [-]	0.34
Solvent	Density [kg/m ³]	8.26×10^{2}
	Viscosity [Pa·s]	2.50×10^{-2}
	Temperature [K]	293.15

Table.1 Physical value in this simulation

上下壁面に対して垂直方向に B = 0.6 T の磁 場を印加した時の MR 流体中の粒子の動きに ついて観察を行った.静止と上壁のみ一方向 に一定速度 v = 0.5 m/s で動かした場合につい て,ある一定時間経過した時のニッケル粒子 の状態を Fig. 1,2 に示す. 粒子色およびカラー バーは粒子の接触数を示しており、粒子表面 に子午線を引くことで粒子の向きを表してい る.静止状態(a)では粒子・粒子の接点は,各粒 子の極点になっており磁場方向に対して平行 にチェーン構造を形成している. せん断流れ を受けている場合(b)では、粒子が形成したチ エーン構造が配向状態を保持した状態でせん 断流れによって傾斜していること, 粒子・粒子 の接点が各粒子の極点からずれていることが 確認できる. これはせん断場によらず粒子が 印加磁場方向に配向することを示しており、 チェーン構造の傾斜は粒子の磁場方向への配 向状態を保持しながら起こることがわかった.

4. 結言

MR 流体を対象とした数値モデルの構築を 行った.静止状態とせん断流れを受けている 状態で,磁場環境下におけるチェーン構造の 形成および磁性粒子の配向を確認することが できた.せん断流れが生じている場合静止状 態のときとは異なるチェーン構造の形成をし ており,粒子の配向を維持した状態で流れ方 向に傾斜していることが観察できた.

またこの条件以外での数値実験も行い, せん断流れと磁性粒子が形成するチェーン構造について報告する.

Fig. 1 Simulation results on isometric view; (a) without shear flow, (b) with shear flow.

Fig. 2 Simulation results on side view; ω (*a*)without shear flow, (*b*)with shear flow. ω

参考文献

- (1) 菊池武士: MR流体のロボティクス・メカト ロニクスへの応用方法:日本ロボット学会 誌,31,5(2013) pp.469-472.
- 神田信, 貝出絢, 佐伯隆, 栃木弘:新規オ イル増粘・ゲル化剤による磁気粘性流体の 安定性に関する研究:化学工学論文集, 45 (2019) pp.115-122.
- 渡邊孝宏, 酒井幹夫: DEM-DNS法を用いた 磁気粘性流体シミュレーション, 粉体工学 会誌, 55 (2018) pp.426-432.
- 4) S. Usune, M. Kubo, T. Tsukada, O. Koike, R. Tatsumi, M. Fujita, S. Takami, T. Adschiri: Numerical Simulations of dispersion and aggregation behavior of surface-modified nanoparticles under shear flow, Powder Technology, 343 (2019) pp.113-121.
- T. Ando, D. Katayama, N. Hirota, O. Koike, R. Tatsumi, M. Yamato: Structure Formation of Magnetic Particles under Magnetic Fields toward Anisotropic Materials, IOP Conf. Series: Material Science and Engineering, 424 (2018) 012076.