マルチバンド RFKO 電界による遅いビーム取り出しの原理実証

試験のためのビームシミュレーション研究

日大生産工(院) 〇奥川 雄太郎 山口 輝人 日大生産工 中西 哲也

1. まえがき

シンクロトロンは、陽子または炭素ビームを用いた がん治療に使用されている。シンクロトロンから取り 出されるビーム強度は、特にスキャニング照射におい て、正確な線量制御のために一様であることが望まれ る。加えて、最も良い線量分布を与えるスポットスキ ャニング照射には高速のビームオン/オフ制御が必要 である。これを実現するためのビーム取り出し方法と して、シンクロトロン内をベータトロン振動しながら 周回している粒子に対して横方向の高周波電界をかけ ることでビームを拡散させて取り出す RFKO(Radio Frequency Knockout)法がある。この RFKO 法はいくつ かの施設で遅いビーム取り出しに使用されている。筆 者らは高周波源として、複数のベータトロン共鳴周波 数帯を含むカラードノイズ(CN)をを提案し、ビームシ ミュレーションで出射ビーム強度が一様になることを 示した。

今回、若狭湾エネルギー研究センター(WERC)でマル チバンド方式の原理実証実験を行うために様々な条件 でビームシミュレーションを行った。また、ビーム実 験で用いる高周波アンプの最大出力電力は、ピーク電 圧により制限される。また、スピル強度は実効値の二 乗に比例するため、キック角データのピーク値を下げ て実効値を上げる操作を行った。このピーク値の操作 によるスピルの影響がないことをシミュレーションに より確認した。今回はこれらの結果について報告する。

2. シミュレーション方法

2.1 概要

シンクロトロンは、六極電磁石、RFKOのある位置 で分割し、その間はトランスファーマトリクスで与え る。また、六極電磁石および RFKO は、その位置でロ ーレンツ力による x'だけを変化させる。各区間のト ランスファーマトリクスは、CERN で開発された AGILE で計算し、本プログラムの入力データとして与えた。 但し、各トランスファーマトリクスにおいて determinant が1になるように一つのマトリクス要素 をわずかに変えている。キック角は全回転数に必要な 値を予め計算し、その後トラッキングの計算を行う。 CN によるキック角のアルゴリズムとして、デジタル フィルタ法を用いた[4]。入力信号列が xk で与えられ る時、デジタルフィルタの出力 yk は次式で与えられ る。

$$y_k = \sum_{n=0}^{N_h} h_n x_{k-n}$$
 , (1)

ここで、Nh+1はフィルタ係数の数、h_nはバンドパス フィルタに対しては次式で与えられる。

$$h_n = \frac{2}{\pi m} \cos(m\omega_0 T) \sin(m\omega_b T) \quad (m \neq 0)$$

$$h_0 = 4f_b T \qquad (m = 0)$$

$$m = n - N_h / 2$$

$$\omega_0 = (\omega_H + \omega_L) / 2$$

$$\omega_b = (\omega_H - \omega_L) / 2$$

ここで、nが0~N_hである時mは-N_h/2 ~ N_h/2の値を取る。Tは入力信号の間隔を与えるサンプリング周期、 $f_{\rm H}(\omega_{\rm H}=2\pi f_{\rm H})$ は高域遮断周波数、 $f_{\rm L}$ は低域遮断周波数である。

CNを信号源としたRFK0によるキック角を計算するた めに、上記デジタルフィルタ法を次のように用いる。 先ず、-1から1までの乱数xkを発生させると、その数値 列はディジタルホワイトノイズに等価である。その時、 ykは周波数バンド幅がfLからfBまでのデジタルカラー ドノイズとなる。従って、サンプリング周期をシンク ロトロンの周回時間とすると、Ykの数値列はある粒子 の周回毎のキック角とすることができる。その際、式 (1)の各パラメータは次のように定義される。fLとfB (1)の各パラメータは次のように定義される。fLとfB (1)の各パラメータは次のように定義される。fLとfB (1)の各パラメータは次のように定義される。fLとfB (1)の各パラメータは次のように定義される。fL (1)の各パラメータは次のように定義される。fL (1)の各パラメータは次のように定義される。fL (1)の各パラメータは次のように定義される。 fL (1)の fL (1) fL

$$\delta_{N_{rev},i} = C \cdot y_{((N_{rev}-1)N_s+i)}$$

Gは振幅係数、 N_{rev} は回転数、iはビン番号、 N_s はビン の総数である。ベアーチューンは v_x =1.681、 v_y =0.791 で あ る 。 バ ン ド の 周 波 数 幅 は (f_{L}, f_{H})=(n+0.31, n+0.36), (n+0.64, n+0.69) と し 、 n=0, 1, 2, 3, 4までの10バンドとした。周回周波数は炭素 55MeV/uでは、2.973MHzである。六極電磁石は3万ター ンの間に立ち上げ、その後RFK0をONし、WERCの取り出

BEAM SIMULATION STUDY FOR PROOF-OF-PRINCIPLE TEST OF SLOW BEAM EXTRACTION BY MULTIBAND RADIO FREQUENCY ELECTRIC FIELD

Yutaro OKUGAWA, Teruto YAMAGUCHI and Tetsuya NAKANISHI

し実験に相当する740,000ターンのシミュレーション を行った。粒子数は50万個、RFKOキック角は約45% の粒子が取り出されるように調整した。45%に調整した のは、今回の実験で用いた40Wの高周波アンプではこの 程度の取り出しになると考えたためである。

2.2 ビン数の決定

シミュレーションでは、全粒子をビンと呼ばれる場 所に集中させ、1 ターンごとに全てのビンの粒子に対 してキック角を加えて計算を続ける。Figure 1 はその 概略図である。ビン数の決定に当たっては実際の CN 発 生方法について説明する必要がある。粒子に与える CN は DAC を用いて発生させた。その模式図を Fig. 2 に示 す。あらかじめ PC 上で計算したキック角データを DAC のメモリに書き込み、外部クロックにより出力する。 キック角データを出力するクロック周波数は、必要な 最大周波数 14MHz を考慮して決めた。ある波形を正し くサンプリングするには、波形の持つ周波数成分の最 大値の 2 倍以上の周波数でサンプリングする必要があ る。この値が高いほど精度は良くなるため、今回は最 大周波数の 10 倍 (140MHz) 以上を考えた。

一方、使用した DAC に適用することができる周波数 は最低で 250MHz であるため、クロック周波数はこの値 とした。周回周波数を $f_{\rho=2}$. 973MHz、ビン数を N_s とす ると、ビンの時間間隔は、 $(1/f_0 \cdot N_s)$ で表される。これ をクロック周波数 250MHz に合わせて出力するため式 (2)のような関係が成り立つ。よって、ビン数は 84 個 となり、1 ターンあたり 84 個のデータが作成されるこ とになる。

3. キック角データの選択とシミュレーション結果 DACメモリには限りがあるため、計算したキック角データ を繰り返し使用する必要がある。さらに、データ処理をする ためにエクセルに取り込むことを考えて、今回は5万ター ン分以下のデータを繰り返し使うことにした。そこで、20万 ターン分のキック角データを用いたビームシミュレーション を行い、そこから3区間のキック角データを選んだ。Figure 3は20万ターン分のキック角を連続的に用いたビームシミュレーション結果であり、100ターンの間に取り出された粒子数をプロットとしたものである。Fig. 3から①1-20000、②1-50000、③70000-120000ターンのキック角データを繰り返し用いることにした。

上記 3 つの区間でバンド数 1,2,4,6,8,10 に対してビー ムシミュレーションと WERC でのビーム実験を行った。 1 バンドと10 バンドの結果をそれぞれ Fig. 4 から Fig. 9 に 示す。Fig. 4 から Fig. 6 はシミュレーション、Fig. 7 から Fig. 9 は実験結果である。シミュレーション結果から 1 バンドに 対して 10 バンドのほうがスピル強度のばらつきが小さいこ とが分かる。繰り返しキック角データを用いたことにより、ス ピルに周期性が見られた。実験結果も同様の結果が得ら れ、スピルに周期性が確認できたが、10 バンドにおいては シミュレーション結果ほど明確な周期性が見えないものが あった。周回ビームの初期強度分布は、WERCではビー ム入射時の粒子密度分布が一様になるような入射をして いることから、セパラトリクス内で一様な分布とした。ただし、 Figs. 3,16 の結果はガウス分布で行っている。

Figure 3: Spill structure simulated with continuous data.

Figure 4: Spill structures simulated using data of 1 to 20000 turns with 1 band (a) and 10 bands (b)

— 569 —

Figure 5: Spill structures simulated using data of 1 to 50000 turns with 1 band (a) and 10 bands (b).

Figure 6: Spill structures simulated using data of 70000 to 120000 turns with 1 band (a) and 10 bands (b).

Figure 7: Beam experiment results using data of 1 to 20000 turns with 1 band (a) and 10 bands (b).

Figure 8: Beam experiment results using data of 1 to 50000 turns with 1 band (a) and 10 bands (b).

Figure 9: Beam experiment results using data of 70000 to 120000 turns with 1 band (a) and 10 bands (b).

スピル強度のばらつきの評価を行うのに、標準偏差 を用いた。データ数をn、取り出された粒子数をx、粒 子数の平均を \bar{x} とすると、標準偏差 σ は以下の式で与 えられる。

$$\frac{\sigma}{\overline{x}} = \frac{1}{\overline{x}} \sqrt{\frac{\sum \left(x - \overline{x}\right)^2}{n}}$$

1回の取り出しにおけるスピル全体の標準偏差を求 める場合、平均値の変化が大きい立ち上がり部分は計 算に含めず、平均値がほぼ同じ区間を用いた。結果と して、200000-700000 ターンを5分割し、それぞれの 区間で標準偏差を計算し、それらを平均した。3つの繰 り返しキック角データをバンド数 1,2,4,6,8,10 に対 してばらつきを計算した。Fig. 10に計算結果を示す。 バンド数が増えるにつれてばらつきの値が減少していくこ とが分かる。また、繰り返しキック角データによるばらつき の差は8バンドで①が最も良いが、10バンドでは③も良い 結果になった。8 バンドにおいては②、③の2 つのデータ には周期的なスピルの変動があったのに対して①ではほ とんど見られなかったことによるものだと考えられる。10 バ ンドでは、①に周期的なスピルの変動が表れたため8バン ドから大きな変化はしなかったと考えられる。②と③は周期 的なスピルの変動はそのままだが、連続的な変化が少なく なったため 8 バンドよりばらつきの値が減少したと思われ る。

一方、同様に評価した実験結果を Fig. 11 に示す。シ

ミュレーションと同様の傾向を示したが、シミュレーション結 果ほど標準偏差は下がらなかった。8 バンドと 10 バンドに おいては使用するキック角データによるばらつきの差はほ とんど見られなかった。

Figure 10: Calculated variations of the spill intensity vs. the number of bands.

Figure 11: Experimental results of variation of the spill intensity vs. the number of bands.

4. キック角最大値を下げる操作とスピルへの影響

ビーム実験に用いる高周波アンプの最大出力電力は、 キック角データの最大値によって決まる。通常の正弦 波では、最大電圧は実効値の $\sqrt{2}$ 倍という関係があるが、 キック角データの場合この値よりも大きくなる。 Figure 12 にキック角データの例を示す。このデータ は1万ターン分のキック角データを出力したものであ り、データ数は84万個である。最大値は7.53×10⁻⁶ [rad]、実効値は1.53×10⁻⁶[rad]であった。最大値は 実効値は正弦波の場合に比べて $\sqrt{2}/5$ 倍でしか使えな い。また、出射粒子数は実効値の2乗におおむね比例 するため、取り出しへの影響は大きい。そのため、キ ック角の最大値を下げる操作を行った。今回最大値は ±5×10⁻⁶[rad]にした。

最大値の調整は次のように行った。 $|V_p| > 5 \times 10^{-6}$ の場合、前後の値が0をクロスするまでの全ての値に 5×10⁻⁶/ $|V_p|$ をかけて波形が滑らかに変化するように した。また、途中でキック角の絶対値が増加に転じた 場合は、それ以降の変更は行わないようにした。最大 値を下げる処理を行ったキック角データの例を Fig. 13 に示す。 $\pm 5 \times 10^{-6}$ [rad]よりも大きな値が $\pm 5 \times$ 10⁻⁶ [rad]にそろっていることが確認できる。この操 作により実効値は5/3.3倍にできた。スピルへの影響 を確認するため、ビームシミュレーションを行った。 最大値を下げる操作を行う前のシミュレーション結果 と操作を行った後のシミュレーション結果を Fig. 14 に示す。この結果から、最大値を下げる操作を行って もスピルに大きな変化はないことが分かる。

Figure 12: Kick angle data before lowering maximum value.

Figure 13: Kick angle data after lowering maximum value.

Figure 14: Simulation results using kick angle data before lowering maximum value (a) and after lowering maximum value (b).

5. 結論

WERC での原理実証実験を行うために比較的スピル が平坦な3種類のキック角データを用いたビームシミ ュレーションを行った。8バンドと10バンドにおいて シミュレーション結果では使用するキック角データに よって偏差にばらつきが生じたが、実験結果では、ば らつきの差はほとんど見られなかった。また、キック 角データの最大値を下げる操作を行うことにより、実 効値は5/3.3倍にでき、スピルに影響は見られなかっ た。

参考文献

 L.Falbo, "Advanced Accelerator Technology Aspects for Hadron Therapy," Proceedings of the HIAT, pp. 156-162, 2012.

[2] T. Nakanishi, Nucl. Instr. and Meth. A621 (2010) 62.

- [3] T. Nakanishi, A. Shinkai, Nucl. Instr. and Meth. A769 (2015) 16-19.
- [4] T. Nakanishi, K. Tsuruha, Nucl. Instr. and Meth. A608 (2009) 37.