日大生産工(研究員・非常勤) 〇石塚 芽具美 日大生産工 大坂 直樹

1. まえがき

本研究では,自己組織化した蛍光性有機薄膜 の発光現象と層構造の関係を明らかにし,単分 子層からなる機能性薄膜の開発を目指してい る. ポリマー中に分散させた蛍光性有機分子の 光反応性,光応答性に関する研究は数多く行わ れており,目指す蛍光性有機薄膜の作成は,そ れらを参考にしていく. そこにつながる課題と して、トリチオシアヌル酸(以下TCA)やベン ゼントリチオールの自己組織化単分子膜(以下 SAM膜)を貴金属表面上に構築し、その構造の 解明についての研究を進めてきている.これら の分子は、蛍光分子を励起したときのエネルギ ーが金属基板に流れないためのスペーサーと して,安定な材料の候補として有用である.特 にTCAは、工業的に金属とポリマーの接着剤 やその架橋剤の主成分として用いられており, 金属や有機分子をつなぐ材料として期待され る.

これまでに、TCAをはじめとした各種チオ ール分子の銀表面上への吸着において、どのよ うな構造をとっているかを明らかにしてきた. また、TCAと各種チオールの混合溶液を用い たSAM膜作成を行い、主に赤外反射吸収 (IRAS)法を用いて調べ、報告してきた¹⁾.

本講演では、さらに、銀表面への共吸着にお けるSAM膜形成の安定性の検討として、TCA とベンゼンチオール(BT)の共吸着膜作成等 を行い、主にIRAS法を用いて調べた結果につ いて報告する予定である.

2. 実験方法および測定方法

[銀蒸着膜表面の作製]

これまで同様の作製法である. 25×25×1.5 mmのサイズの銅板を研磨機(Buhrer社製 ecomet250)を用いて鏡面研磨した. 研磨後に 中性洗剤,超純水,アセトン,メタノールを用 いて超音波洗浄を行った. 一度デシケーター内 で真空乾燥を行い,真空蒸着装置(ULVAC社 製VPC-060) にセットし高真空下で銀を約100 nm蒸着した. 自己組織化を行う直前まで, 真 空デシケーター内で保管した.

[SAM膜の作製]

チオール / メタノールまたはエタノール (ア ルコール) 溶液を作製し, 前述の方法で作製し た銀蒸着膜基板を数日間浸漬し, 取り出した後 に用いた溶媒でよく洗浄することで多層膜部 分を洗い流し, チオールのSAM膜を銀表面に 作製した. 他の分子を混在させる場合, 上記の 溶液に目的のモル濃度で他の分子を溶解させ, 同様の方法で二つの分子が共に吸着できる環 境とし, 共吸着単分子膜とした.

[IRAS法による測定]

IRAS スペクトルの測定には、フーリエ変換型赤外分光器(JASCO FT/IR-4200)を用いた.この分光器には、85°の入射・反射角での測定が可能な反射ユニットと、液体窒素冷却型の高感度 MCT 検出器が備わっている.銀を蒸着後、真空保存しておいた銀蒸着膜をバックグラウンドとして測定し、各試料について測定を行った.分解能は4 cm⁻¹で積算回数は約 1000 回とした.

3. 実験結果

図1に、BTとTCAを銀表面上でモル比1:1で 共吸着させたSAM膜のIRASスペクトルを示 した.また、図2に銀表面上のBTのみのSAM膜 のIRASスペクトルを、図3に銀表面上のTCA のみのSAM膜のIRASスペクトルを示した.

これらのスペクトルを比較すると, 今回用い たベンゼン環にチオール基が1つついただけの ベンゼンチオールにおいて, TCAの銀蒸着膜 表面への自己組織化を大きく妨げることがな いことが分かった.

Coadsorption Self-Assembled Monolayers of Trithiocyanuric Acid and Benzenethiol on an Evaporated Silver Surface

Megumi ISHITSUKA and Naoki OSAKA

このほか, TCAに対するBTの溶解割合を変 えた実験についても行ったので,本講演ではそ の割合による違いも検討した結果も含めて報 告する.BTの割合を増加させると,BTがより 多く自己組織化し,割合を減少させると自己組 織化する分子も減ることが明らかとなった.こ れは,以前に報告している1,3,5-ベンゼントリ チオール (BTT)におけるTCAの自己組織化の 阻害とは異なる現象であり,BTとTCAはお互 いに大きく影響し合わず,その溶解濃度によっ て吸着する割合が決定されることが示唆され た.

TCAは,類似分子であるBTTとの共吸着過程 においてTCAの吸着を阻害することがこれま でに明らかとなっているが,さらに,BTTより もチオール基の数が1つ少ないBTでは吸着を 抑制するに留まることが分かった.

【参考文献】

1) 石塚芽具美, 大坂直樹, トリチオシアヌル酸 およびベンゼンチオールの銀表面への共吸着, 日本化学会第98春季年会, (2018), 1PB-088

2) L. Wan, M. Terashima, H. Noda, and M. Osawa, J. *Phys. Chem.* B 2000, 104, 3563-3569

