数値材料試験による繊維強化熱可塑性プラスチックの

非線形材料挙動の予測

日大生産工(院) 〇土田 翔夢 日大生産工 平山 紀夫 サイバネットシステム(株) 山本 晃司 東北大学 寺田 賢二郎

1. 緒言

熱可塑性樹脂を繊維で強化した繊維強化熱可 塑性プラスチック(以下 FRTP)は、比強度・ 比剛性に優れ、母材である熱可塑性樹脂が再溶 融可能であるため、リユースやリサイクルが可 能な先進複合材料である.そのため近年では、 欧州を中心に幅広い工業製品の主要構造部材に 採用され始めている.しかしながら、熱可塑性 樹脂は温度と時間に依存した非線形挙動を示す ため、FRTPの力学特性も温度と時間に依存し た異方性の非線形挙動を示す.このため FRTP を用いた構造部材の FEM 解析では、FRTP の異 方的な非線形挙動を表現する材料構成則とその 非線形材料パラメータを同定することが必要で ある.

これまでもFRTPの非線形挙動を表現する材料 構成則の研究や、その材料パラメータを同定する 研究は盛んに行われているが、同定したパラメー タの信頼性を実際のFRTPの材料試験結果から検 証した研究報告は数少ない.

そこで本研究では、熱可塑性樹脂の温度と時間に依存した非線形挙動を弾塑性・クリープ・損傷 複合構成則で表現し、進化アルゴリズムを使用して熱可塑性樹脂の非線形材料パラメータを同定する.そして、同定した樹脂の非線形材料パラメ ータを使用し、均質化理論に基づく数値材料試験によりFRTPの直交異方性Hill弾塑性・クリープ・ 損傷複合構成則の材料パラメータを算出した.そして、平織繊維を強化材とするFRTPの単軸負荷除荷試験の結果と、同定した材料パラメータを用いたFEM解析結果を比較・検証し、算出した材料 パラメータの有用性を検証した.

2. 解析手順

数値材料試験による直交異方性 Hill 弾塑性・ クリープ・損傷複合構成則の材料パラメータ同 定の手順を Fig.1 に示す.

① Step1 では, FRTP の母材である熱可塑性樹

脂の負荷速度を変化させた単軸引張除荷試 験を行い、そこで得られた応力-ひずみ関係 を入力データとして、等方性弾塑性・クリー プ・損傷複合構成則の材料パラメータを同定 する.

- ② Step2 では、Step1 で同定した母材樹脂の材料 パラメータを用いて、一方向繊維強化熱可塑 性プラスチック(以下 UD_FRTP)の FEM モ デルの 6 つの主軸方向に対して負荷速度を 変化させた数値材料試験を行い、応カーひず み関係を算出する.
- ③ Step3 では、Step2 で算出した応カーひずみ関係を入力データとして、UD_FRTP の直交異方性 Hill 弾塑性・クリープ・損傷複合構成則の材料パラメータ同定をする。
- ④ Step4 では、Step1 と Step3 で同定した、母材 樹脂とUD_FRTPの材料パラメータを用いて 平織繊維を強化材とした FRTP(以下 CROSS_FRTP)の FEM モデルを Step2 と同 様に 6 つの主軸方向で数値材料試験を実施 し、応力-ひずみ関係を算出する.
- ⑤ Step5 では、Step4 で得られた CROSS_FRTP の応カーひずみ関係を入力データとして、 CROSS_FRTP の直交異方性 Hill 弾塑性・ク リープ・損傷複合構成則の材料パラメータを 同定する。

以上の手順で解析を行い,最後に平織繊維強 化熱可塑性プラスチックを単軸負荷除荷試験し た応カーひずみ線図と,Step5 で同定した CROSS_FRTP の材料パラメータを使用した FEM 解析により得られた応カーひずみ線図を 比較し,パラメータの妥当性について検証した.

- 3. 母材樹脂の材料パラメータ同定
- 3.1 弾塑性・クリープ・損傷複合構成則

Prediction of nonlinear material behavior of fiber reinforced thermoplactics by numerical material testing

Shoumu TSUCHIDA, Norio HIRAYAMA, Koji YAMAMOTO and Kenjiro TERADA

本研究では、樹脂の塑性及びクリープによる 非弾性変形レベルは小さいものと仮定し、微小 ひずみ理論を採用する.この時、全ひずみは次 式のように加算分解できる.

$$\mathcal{E} = \mathcal{E}^e + \mathcal{E}^p + \mathcal{E}^c \tag{1}$$

ここで, $\varepsilon^{e}, \varepsilon^{c}$ および ε^{p} はそれぞれ弾性ひず み, 塑性ひずみ, クリープひずみである. また, 樹脂の塑性及びクリープ挙動は, 次式のような 流れ則に従うものとする.

$$\dot{\varepsilon}^{p} = \dot{\gamma}_{p} N \tag{2}$$
$$\dot{\varepsilon}^{c} = \dot{\gamma}_{p} N \tag{3}$$

ここで、 $\dot{\gamma}_{p}, \dot{\gamma}_{c}$ はそれぞれ塑性乗数、クリープ 乗数であり、Nは流れベクトルである.また本 研究では累積塑性ひずみ $\alpha = \int \dot{\varepsilon}^{p} dt$ を独立変 数とする硬化関数を、 $\sigma_{y0}, R_{\infty}, H_{0}, \beta$ を材料パ ラメータとする Voce の硬化則を採用する.

一方, クリープ乗数 γ_cの発展則には次式のような C1, C2, C3, C4 を材料パラメータとし,
応力と温度の関数で表す Norton 則を用いる.

$$\dot{\gamma}_c = C_1 \sigma^{C_2} t^{C_3} \exp\left(-\frac{C_4}{T}\right) \tag{4}$$

損傷構成則は、内部損傷により弾性係数のみ がある関数形に従って低減される弾性損傷モデ ルを採用する.具体的には、弾性係数を損傷に 程度を表す損傷変数 D を用いて次式で表す.

$$E = (1 - D)E_0 \tag{5}$$

ここで、 E_0 は材料が全く損傷していない状態の弾性係数、Eは損傷変数0 < D < 1により低減された弾性係数である.

3.2 母材樹脂の単軸負荷除荷試験

本研究では、アルケマ㈱製のアクリル系樹脂 をベースとした現場重合型熱可塑性 Elium(以 下, Elium)を母材樹脂とした. Eliumの単軸引 張除荷試験片は、JIS-K7161 に準拠したダンベ ル型試験片を注型により成形した. 試験機は、 精密万能試験機(㈱島津製作所 オートグラフ AG-I)を用いた. 試験速度は、0.1,1.0,10mm/min の3水準とし、負荷時と除荷時の速度は同じと し、引張ひずみが約3%になるまで負荷した後、 荷重がゼロになるまで除荷した.

3.3 進化アルゴリズムによる同定結果

単軸引張除荷試験した結果と,試験結果の応 カーひずみ関係を入力データとして,差分進化 法により同定した曲線を Fig.2 に示す.また, 同定パラメータを Table1 に示す.

4. 結言

本研究では、数値材料試験による FRTP の直 交異方性 Hill 弾塑性・クリープ・損傷複合構成 則の材料パラメータを同定した.今後は平織繊 維強化熱可塑性プラスチックを単軸負荷除荷試 験した応力-ひずみ線図と、同定パラメータを 用いた FEM 解析の結果を比較しその有用性を 検証する.

Fig.1 解析方法のフローチャート

Table1 同定されたパラメータの値

材料パラメータ	記号	同定値
初期弾性率 [MPa]	Е	3340
初期降伏応力 [MPa]	σ_{y0}	33.3
硬化パラメータ [MPa]	Н	74.1
	\mathbf{R}_0	87.6
	β	1503
クリープパラメータ	C1	1.0
	C2	1.7
	C3	-0.73
	C4	4039
損傷パラメータ	d1	28.2
	d2	1.23