太陽電池光吸収材料用ペロブスカイト型 Sn(II)ハロゲン化物の水溶媒からの合成 日大生産工 〇藤瀨 和貴

日大生産工(院) 山根 庸平 山田 康治 中釜 達朗

1 緒言

1-1 ペロブスカイト太陽電池

近年の地球温暖化を危惧する背景より,再生可 能エネルギーを用いたクリーンな発電方式に注 目が集まっている.その発電方式は多種多様であ るが,太陽光発電は規模に応じた発電が可能であ り,騒音を発生させない等の利点がある.現在, 家庭や企業など最もよく使用されている太陽電 池にシリコン系太陽電池があり,その電機変換効 率(PCE)は最大で26%¹⁾を達成している.ペロブ スカイト太陽電池は,Pb(II)を用いたCH₃NH₃PbI₃ で23.3%²⁾というシリコン系太陽電池に匹敵する 高いPCEを得られることや低い製造コスト,軽量 さから次世代の太陽電池として注目を集めてい る.このペロブスカイト太陽電池の光吸収材料に 使用されるペロブスカイトハロゲン化物(ABX₃) はFig.1に示す単位格子から成る結晶構造をもつ.

• A site : Cation $(Cs^+, CH_3NH_3^+, CH(NH_2)_2^+)$ • B site : Metal ion (Sn^{2+}, Pb^{2+}) • X site : Halide ion (F^-, Cl^-, Br^-, I^-)

Fig.1 Crystal structure of perovskite halide.

1-2 ASnX₃の欠点

デバイスとして実用化が期待される CH₃NH₃PbI₃は有害元素であるPbを含み、デバイ スとして使用する際の毒性が懸念されている.こ のために比較的毒性の低いSn(II)を用いたASnX₃ が代替材料として近年研究されている.しかしな がら、水溶液中においてSn(II)は酸素により自発 的にSn(IV)に酸化されやすく、この不要なSn(IV) のドープによってASnX₃構造中に欠陥の形成や 電子伝導性が付与され、本来の半導体的特性が失 われてしまう欠点を抱えている.したがって、 Sn(IV)がドープしないASnX₃を得るための合成法 の検討やSn(IV)の存在を検知する測定が必要で ある.

1-3 従来の合成法と新規合成法の提案

従来のASnX₃の合成や製膜過程では,DMFやク ロロベンゼンなどの有機溶媒もしくは,原料SnX₂ の加水分解を避けるために酸性水溶液中から合 成される.しかし,有機溶媒は環境負荷,酸性溶 媒からの合成ではSn(II)の酸化という欠点がある. 我々はこれらの問題に対し,水を溶媒とした液相 合成によってASnX₃が合成可能であることを見 出した.³³以下にCsSnBr₃の液相合成の反応式を示 す.

 $\begin{array}{c} Cs^{+} + Br^{-} \\ SnBr_{2} + 2H_{2}O \rightarrow Sn(OH)_{2} \downarrow + 2HBr \rightarrow \\ SnBr_{3}^{-} + Cs^{+} + H_{2}O\uparrow \rightarrow CsSnBr_{3} \end{array} (1)$

(1)の反応においてはじめにSnBr2が水により加水 分解されSn(OH)2を得る.従来はこの加水分解を 進行させないために酸性溶媒を加えるが,あえて 酸性溶媒を加えずに水を蒸発させたところ,目的 物質CsSnBr₃が得られることが確認できた.これ はSnBr2の加水分解と同時に発生したHBrに よって溶液中が酸性に傾き, SnBr3⁻が得られるこ とと同時に、添加した原料CsBr水溶液との反応と 水の蒸発による二つのプロセスが進行すること で、目的物CsSnBr₃が得られたと考えられる.し かし、この特異な液相合成によって合成した ASnX₃の純度の評価や光学的特性などの詳細な 物性データは多くない.本報告では太陽電池材料 への応用を目指した液相合成から不要なSn(IV) を含有しないSn(II)ペロブスカイトハロゲン化物 (ASnX₃)を合成することを目的とした.

2 実験操作

(1)の反応式に基づいてASnX₃ (CsSnBr₃, CH₃NH₃SnBr₃, CH₃NH₃SnI₃)の合成を行った.使用 する水は窒素によってバブリングさせ,脱酸素水

として使用した. 化学量 論比1:1の原料SnX₂と AXにこの水溶媒をそれ ぞれ加え,溶解させた. 二種の原料を混合した 前駆体溶液を減圧加熱 装置(Fig.2)によって蒸発

Synthesis of Perovskite Sn(II) Halides for Solar Cell Light-Absorbing Materials from Water Solution

Kazuki FUJISE, Yohei YAMANE, Koji YAMADA and Tatsuro NAKAGAMA

乾固することでASnX₃を得た.合成した試料の結 晶構造をXRD測定により同定し,相転移を示差熱 分析(DTA)より観測した.更に,Sn(IV)のドーピ ングを観測するために¹¹⁹Sn NMRスペクトルとス ピンー格子緩和時間を測定した.また,上記の方 法で合成した試料(Sample A)の光学的物性や Sn(IV)のドープによる¹¹⁹Sn NMRスペクトルの差 異を確認するために,大気中で蒸発乾固させて合 成したSample BとSn(IV)に対して還元的作用を もたらす 49 SnF₂を添加したSample Cをそれぞれ 比較として合成した.

3 結果および考察

本項目では CsSnBr₃(A ~ C)についてまとめる. Fig.3 に Sample(A)の XRD 測定結果を示す.シ ミュレーションピークと合成試料のピークが一 致し,立方晶ペロブスカイト構造に帰属する結 果が得られた.このことから,水溶媒を用いた 液相合成によって目的生成物 ASnX₃ が得られ ることが確認できた.

次に、合成したSample (A~C)の昇温過程におけ る¹¹⁹Sn NMRスペクトル測定結果をFig.4,5に示す. 観測結果からSample (B)では低温でのピーク幅が 広く、高周波側へのシフトが見られた.これは結 晶構造中にSn(IV)が含有されたことによる電子 伝導の出現に関連付けられる.伝導電子の存在は ¹¹⁹Sn NMRスペクトル測定で観測されたスペクト ルにおいて高周波側にシフトするKnight shiftと して観測される.大気中での合成により溶液中の 溶存酸素濃度が上昇し、Sample (B)の酸化が促さ れた結果であるといえる.Fig.4に示すSample (A) では低温における顕著なブロードニングが抑え られたが、Sn(IV)によるKnight shiftが確認できた. また、Sample (C)の¹¹⁹Sn NMRスペクトル測定の結 果より、低温でのKnight shiftがなく、Sn(II)本来の 共鳴周波数を維持したスペクトルが見られた.こ れによってSnF₂を用いて合成した場合では Sn(IV)の含有を限りなく抑えることができると 確認できた.このSnF₂の添加によって考えられる 反応を(2)式に示す.

 $A_2 Sn X_6 + 2 Sn F_2 \rightarrow 2A Sn X_3 + Sn F_4 \qquad (2)$

Table 1に合成したSample(A ~ C)の T_1 の結果を示 す. 試料にごく少量でも伝導電子や常磁性不純物 が含有されるとその時間(T_1)は早くなる. ⁵⁾ Sn(IV) の影響が観測された試料では短い T_1 を示し、 T_1 が 最も長いSnF₂を添加した試料との差が顕著に示 された.

Table 1 Relaxation time $T_1(s)$ of CsSnBr₃ (A ~ C)

\searrow	CsSnBr ₃ (A)	CsSnBr ₃ (B)	CsSnBr ₃ (C)
$T_{1}(\mathbf{s})$	0.132	1.62×10 ⁻²	1.47

以上の結果からSn(II)ペロブスカイトハロゲン化 物を液相合成によって合成することが可能であ り,デバイスへの応用が期待できると結論づけた.

参考文献

[1] K. Yoshikawa, H. Kawasaki, K. Yamamoto *et al. Nature Energy.* **2**, 17032 (2017).

[2] Xiao-Lei Li, Li-Li Gao, Qian-Qian Chu, Yan Li, *et al. ACS Appl. Mater.* **11**, 3053-3060 (2019).

[3] 日野里海 平成28年度日本大学大学院修士論文.

[4] M. K. Kumar, *et al. Adv. Marter.* 26, 7122-7127 (2014).
[5] T. C. Farrar, E. D. Becker, パルスおよびフーリエ変換 NMR 理論及び方法への入門, 株式会社 吉岡書店 (1976), p 69 ~ 75, p195 ~ 197.