接着剤塗布型コンクリート舗装した RC 床版の劣化診断および健全度の評価

日大生産工(非常勤) 阿部 忠 茨城県 伊藤 高 今野 貴元 日大生産工(院) 中島 博敬 鹿島道路(株) 伊藤 清志

1. はじめに

近年,道路橋 RC 床版の老朽化が進行し,維 持管理が重要な課題となっている.本研究は 1939年の設計基準により設計され,1958年3月 に竣工し,鋼板接着補強や補強も兼ねたコンク リート舗装が施され、60年が経過した茨城県の 栄橋の RC 床版の劣化診断を行った.診断内容 は路面性状,コンクリート舗装における既設床 版との界面の引張強度,およびこの地域は融雪 剤の散布あることから電子線マイクロアナライ ザ(EPMA)試験を実施し,塩化物イオン量な どを診断し,道路橋長寿命化施策における道路 橋 RC 床版の診断技術の一助としたい.

2. 栄橋の橋梁諸元

2.1 設計基準·橋梁形式

栄橋は,1939年の鋼道路橋設計示方書(案)¹⁾ に基づき2等橋として設計されている.幅員は 6.0m(2車線,歩道無し),支間20mの11径間よ り構成されている.橋梁形式はゲルバー式鋼鈑 桁2連続鋼鈑桁3径間単純鋼鈑桁2径間とな り,RC床版の設計厚は15cm ある.本調査は1 径間,20mを調査する.

2.2 補強·補修履歴

補修・補強時の状況を図-1に示す.橋梁台帳 による補修・補強の経歴は、1978年に鋼げたに 塗装工(図-1(1))を施している.RC床版の補 強については、1993年に補強も兼ねた鋼繊維補 強コンクリート舗装(以下,SFRC舗装)が施 されている.この当時のコンクリート舗装法は RC床版を切削・研掃後、直接SFRCを打ち込む 補強法である.また、1995年にはRC床版の耐 疲労性の向上を図る補強法として 0.4mmの鋼板 を用いた鋼板接着が施された(図-1(2)).その 後、1993年に補強も兼ねたコンクリート舗装が 12年後の2005年に、コンクリート舗装が 2年後の2005年に、コンクリート舗装と既設 RC床版との界面がはく離に至った.2006年に 既存のコンクリート舗装部を撤去し、新たに補 強も兼ねた鋼繊維補強コンクリート(SFRC)舗

(1) 鋼げたの塗装 (2) 鋼板接着補強 図-1 鋼げたの塗装および鋼板接着補強

装が施された. この SFRC 舗装は,はく離を抑 制するために舗装界面に高耐久型エポキシ系接 着剤を塗布した.

以上のように、栄橋の RC 床版は補強も兼ね たコンクリート舗装や鋼板接着補強が施され、 コンクリート舗装が 12 年後に再劣化し、新たに 接着剤塗布型 SFRC 舗装が施され、13 年が経過 している.この橋梁のコンクリート舗装は供用 12 年ほどではく離が発生したことから、接着剤 塗布型 SFRC 舗装した RC 床版の再劣化を調査 し、健全性の評価を行う.

橋梁点検および診断

3.1 橋梁点検·診断の概要

本調査では、床版上面からの点検として、橋 面のひび割れ診断、打音法によるはく離状況、 すべり抵抗試験行い、健全性を評価する.また、 以前のコンクリート舗装においては 12 年ではく 離が発生した履歴があることから、既設 RC 床 版も含めた材料物性に関する診断として、SFRC 舗装材および既設 RC 床版の圧縮強度、建研式 引張試験による付着強度、一面せん断試験によ る界面のせん断強度、さらには EPMA 試験によ る堪化物イオン量についての診断を行う.なお、 下面からの点検および劣化診断については鋼板 接着補強されていることから、本調査では省略 する.各試験における調査位置を図-2に示す.

3.2 ひび割れ点検・はく離診断

SFRC 舗装上面のひび割れ状況は,近接目視 により点検を行った.目視とクラックゲージに

Evaluation of Degradation Diagnosis and Soundness of RC Slab with Applied Adhesive Concrete Pavement

Tadashi ABE, Takashi ITO, Takamoto KONNO, Hirotaka NAKAJIMA and Kiyoshi ITO

1-31

図-2 各種診断およびクラック発生位置

よるひび割れ状況およびコア採取位置を図-2に 示す.橋面のひび割れ幅の計測にはクラックゲ ージを用いた.SFRC 舗装のひび割れ発生は橋 軸直角方向に6本が確認された.発生位置は図-2に示すように,伸縮継手から5m付近の橋軸直 角方向にひび割れ幅 0.1mm,長さ1mのひび割 れが1本,約1m離れた位置に0.1mm,長さ1.5m のひび割れがが2本発生している.また,伸縮 継手から12m付近にひび割れ幅 0.2mmのひび 割れが軸直角方向に長さ1.2m程度発生してい る.さらに,伸縮継手から15m,16m付近の軸 直下方向にひび割れ幅 0.1mm,長さ2m程度の ひび割れが発生している.コア採取によるひび 割れの深さは表層より深さ45mmまでであった.

以上より,SFRC 舗装上面にはひび割れ幅 0.1mm 程度のひび割れが発生し,ひび割れ深さ も 45mm 程度であり,舗装界面まで到達は見ら れない.表面性状では一部のコンクリート舗装 表面が摩耗による鋼繊維が露出しているものの 走行性に異常をきたさない.次に,打音法によ るはく離の診断は,橋面全面をテストハンマー を用いて叩きによる診断を行ったが全面に異常 が認められない.

3.3 すべり抵抗性試験

SFRC 舗装面のすべり抵抗試験は, BPN 試験 機と DF テスターを用いて測定した. すべり抵 抗試験の状況を図-3に示す. BPN 試験機(図-3 (1))はイギリスの道路交通研究所で開発され, 路面が濡れた状態自動車の走行速度(約 50km/h) の横滑り摩擦係数と相関があり,規格値として は温度補正後の BPN 値は 60 以上とされている ²⁾.一方,DF テスター(図-3(2))は日本で開 発され,動的摩擦係数を求める方法であり,基 準値はµ(動的摩擦係数)は0.25 以上とされる³⁾. 診断位置(図-3)は,損傷が著しい車両の走行 面の3カ所を轍部(OWP)で実施した.すべり抵 抗の測定時の気温は25℃であることから補正し た結果を表-1に示す. BPN 試験および DF テス ターでの計測結果はいずれも規格(基準)値を満

(1) BPN試験状況
(2) DFテスター
図-3 すべり抵抗試験
表-1 すべり抵抗

	BPNによるすべり抵抗値	動的摩擦係数:μ(V)
No.1	72	0.46
No.2	75	0.45
No.3	77	0.48
規格(基準)値	60以上	0.25以上

図─5 建研式引張試験方法

足す結果が得られ、すべり抵抗試験は健全である結果が得られた.

3.4 建研式引張試験による界面の付着性能

(1) 建研式引張試験による付着強度⁴⁾

SFRC 舗装と既設 RC 床版との付着性能を検 証するために,建研式引張試験を行い,引張付

表-2 建研式引張試験機による付着強度

試験位置	直径	断面積	最大荷重	引張強度
	$D (mm^2)$	$A (mm^2)$	(kN)	(N/mm^2)
No.1	99	7698	20.32	2.64
No.2			15.17	1.97
No.3			12.62	1.64
No.4			17.12	2.22
No.5			12.77	1.66
No.6			13.12	1.70

着強度を計測する. ここで, RC 床版の断面方 向の調査寸法を図-4, 建研式引張試験の概略を 図-5に示す. 試験方法は SFRC 舗装上面に電動 ドリルを設置し, 直径 100mm で既設 RC 床版の 鉄筋上面位置まで切り込みを入れる. 次に, コ アの上面に接着剤を塗布し, 鋼製治具を圧着し て養生を行う. 接着剤が硬化した後, 油圧式接 着力試験機を用いて載荷速度 1.0N/cm²/sec で引 張付着強度試験を実施する(図-5(2)). 引張付 着試験方法における強度の算定は式(1)として与 えられている.

$$= P/A \tag{1}$$

ただし, fr:引張付着強度 (N/mm²), P:接 着荷重 (N), A:接着面積 (mm²)

(2) 付着強度およびはく離状況

fт

建研式引張試験により得られた界面の引張付 着強度を表-2に示す.

接着剤塗布型 SFRC 舗装は,界面に付着強度 3.7N/mm² を有する付着用接着剤を塗布した施工 法である.建研式引張試験は図-2に示すように6 箇所からコア採取した.引張付着強度はコア No.1 が 2.64N/mm² と最も高く,低い位置は輪荷 重走行位置のコア No.3 が最も低く 1.64N/mm² である.RC 床版の上面増厚補強における付着 強度の基準値 1.0N/mm² 以上となり,十分な付 着性を有している.よって,接着剤塗布型 SFRC 舗装においては付着用接着剤の効果により,現 状では引張付着強度が十分確保され健全である 結果が得られた.破壊は接着層から下面の RC 床版内で引張破壊となった.

3.5 コア採取によるせん断強度

(1) 一面せん断試験⁵⁾

SFRC 舗装との付着面には輪荷重走行による 一面せん断強度を受け、はく離に大きく影響を 及ぼす.よって、SFRC 舗装と RC 床版との付着 面の一面せん断試験を行い、せん断強度を評価 する.

一面せん断試験は、φ 50mm、高さ 90mm の
コアを採取し SFRC 舗装と既設 RC 床版との界

(1) 寸法および供試体の配置 (2) 試験装置図-6 一面せん断試験装置

面の一面せん断試験による一面せん断強度を評 価する. 試験体の製作は SFRC 舗装部 70mm の 打ち 20mm 切断し, RC 床版部は 20mm に 30mm のコンクリートを打ち継ぎ, 全長 100mm の試 験体を製作した.

(2) 実験方法およびせん断強度

既存 RC 床版と増厚界面の付着強度の評価に 関しては、モード II 型(縦ずれ)の一面せん断 試験装置を用いて一面せん断試験を行い、増厚 界面のせん断強度(fcv0.SF)を評価する.ここで、 モード II 型の一面せん断試験装置およびせん断 面を図-6に示す.モード II 型一面せん断試験装 置を用いて、一面せん断試験用供試体を既設 RC 床版と同等なコンクリート材片と増厚界面との 接合面でせん断破壊となるように供試体を設置 する.荷重の載荷方法は、コンクリートの圧縮 載荷法 JIS A 1108の規定に基づき、加圧速度を 毎秒 0.6N/mm² で行った.

次に、一面せん断試験法によるせん断強度は、 モードⅡ型による一面せん断試験によって得ら れるコンクリートのせん断応力度をせん断強度 fcv0.SFと定義し、式(2)より算出する.

fcv0.SF = P/As (2) ここで, fcv0.SF: SFRC 舗装における界面のせ ん断強度 (N/mm²), P:破壊荷重, As: 一面せ

コンクリート舗装と RC 床版との界面のせん 断強度を表-3に示す. せん断強度は供試体 No.1, 3 でそれぞれ 7.49N/mm², 7.03N/mm² であり, 破 壊は RC 床版側のコンクリート層で破壊してい る.供試体 No.2 は 8.87N/mm², 破壊はコンクリ ート層内で破壊に至っている.よって,接着剤 塗布した舗装界面は輪荷重走行による水平方向 のせん断強度が十分確保されている.

3.6 EPMA試験による塩化物イオン量の測定⁶⁾

EPMA試験方法

ん断破壊面積 (mm²)

EPMA 試験は雨水が滞水し易い地覆側(図-2) のコンクリート舗装および RC 床版部に φ25mm

試験位置	直径 D(mm)	断面積 A(mm ²)	荷重 (kN)	せん断強度 (N/mm ²)
A-1	50.0	1,962	14.7	7.49
A-2	50.0	1,962	17.4	8.87
A-3	50.0	1.962	13.8	7.03

表-3 一面せん断試験によるせん断強度

図-7 EPMA試験の結果

のコアサンプルを採取した. 採取したコアサン プルは深さ 100mm のうち SFRC ト舗装部が 70mm, 既存 RC 床版部は 70mm であり, 圧縮鉄 筋配置付近までを評価した.

採取したコアより, EPMA 試験による面分析 を行い, コンクリート表面から深さ方向の塩化 物イオン量を図-7に示す.また,鉄筋腐食発生 限界濃度 1.2kg/m³ も図-7に併記した.塩化物イ オン濃度(Cl⁻)(kg/m³)の算出は,EPMA によ り得た骨材込み(コンクリート)の深さ方向の 平均塩化物イオン濃度(mass%)からコンクリ ートの乾燥単位容積質量は 2200kg/m³ を適用し て式(5)より算出する.

Cl-(kg/m3)=濃度分析值(mass%)/100×

乾燥単位容積質量(kg/m³) (5) 式(5)より Cl-濃度 (kg/m³)の結果を図-7に併 記する. コアの Cl-濃度は図-7(3)に示すように, SFRC 舗装面から深さ 5mm 付近の塩分量が 10kg/m³ で最大値を示している.また,SFRC 舗 装と RC 床版の付着面付近,上面から 65mm 付 近で 3.5kg/m³ であり,この 2 カ所が鉄筋腐食発 生限界濃度である 1.2kg/m³ を上回る結果となっ た.既設 RC 床版は舗装界面の接着剤の効果に より, RC 床版への塩分浸透が遮蔽され, 塩分 量が 0.8kg/m³ 程度である.

- 4. まとめ
- (1) SFRC 舗装面には軸直角方向にひび割れ幅 0.2m 以下のひび割れが発生するものの,打 音法によるはく離は確認されない.すべり 抵抗値においても動的摩擦係数がいずれも 基準値以上であり,舗装面は健全である結 果が得られた.
- (2) SFRC 舗装と既設 RC 床版の界面では建研 式引張試験による引張付着強度は低い強度 で 1.64N/mm², また,一面せん断試験によ るせん断強度も 7.03N/mm² 以上を有し,輪 荷重の作用によるせん断抵抗も大きく,付 着面は健全である結果が得られた. SFRC 舗装と RC 床版の付着性は健全である結果 が得られた.
- (3) EPMA 試験による塩化物イオン量について は SFRC 舗装内で鉄筋腐食発生限界濃度で ある 1.2kg/m³ を上回る領域が認められるも のの,舗装界面に塗布した接着剤の遮蔽効 果により,既設 RC 床版への塩分浸透が抑 制され,鉄筋の腐食には大きな影響を及ぼ さないものと考える.
- (4) コンクリート舗装,鋼板接着補強などを施 しながら 60 年経過した橋梁 RC 床版の橋面 から深さ 140mm までを診断した結果,SFRC 舗装や床版の材料の劣化が見れなく,健全 な結果が得られた.

参考文献

- 日本道路技術協会:鋼道路橋設計示方書案解 説,1939.6
- 2) 日本道路協会: 舗装試験法便覧, 1988.11
- 3) 日本道路協会:舗装試験法便覧別冊(暫定試 験方法),1996.8
- 4) 国土交通省大臣官房官庁:公共建築工事標準 仕様書(建築工事編) 平成28年版,2016
- 5) 阿部忠,木田哲量,徐銘謙,澤野利章:道路 橋 RC 床版の押抜きせん断耐荷力評価式に関 する研究,構造工学論文集, Vol.53A, pp.199-207, 2007.3
- 6) 土木学会:コンクリート標準示方書(規準編),土木学会規準および関連規準,EPMA法によるコンクリート中の元素の面分析方(案),pp.297-307,2007