PA6 シートを用いた連続繊維 CFRTP とマグネシウム合金の摩擦シーム接合

日大生産工(院)	○柳川	拓海	日大生産工	坂田	憲泰
日大生産コ	〕 前田	将克	日大生産工	木村	悠二
日大生産コ	二 山田	和典	日大生産工	平山	紀夫

1. 緒言

近年、地球温暖化の問題から二酸化炭素の排出量削 減が求められている. 自動車では車体の軽量化による 燃費向上を目的とし, 金属材料や繊維強化プラスチッ ク(FRP)など適材適所に使用するマルチマテリアル 化が検討されている. 自動車に用いるFRPにはリサイ クル性、製造時間などの観点から繊維強化熱可塑性プ ラスチック (FRTP) の使用が注目されており、マルチ マテリアル車体の開発にはFRTPと異種材料間の接合 技術が重要となる.従来,FRPと金属材料の接合には 機械的締結や接着剤が用いられてきたが、機械加工に よる応力集中,有害物質の発生,接合時間などに課題 がある. 摩擦攪拌接合は, 主に非鉄金属材料の接合に 用いられている固相接合で、接合による強度低下や変 形が小さいなどの多くの特徴があり、樹脂材料の接合 にも適している¹⁾. 加えて, その応用技術である摩擦シ ーム接合はツール先端にプローブがない点が特徴で, 薄板の重ね接合に適している.これまで、永塚らは強 化材に短繊維を用いたCFRTPとアルミニウム合金の摩 擦重ね接合におけるシランカップリング処理の有効性 2)を明らかにしている.しかし、樹脂量が多く、強度が 低い短繊維CFRTPを用いているため、接合面積は大き くなるが、引張せん断試験では短繊維CFRTPで破断す る結果となっている.著者らは連続繊維CFRTPとアル ミニウム合金の摩擦シーム接合について検討し、シラ ンカップリングの官能基が強度特性に与える影響³⁾, 連続繊維CFRTPとアルミニウム合金の間に挿入する PA6シートが接合強度に及ぼす影響を明らかにしてき た4. 本研究では、連続繊維CFRTPと今後自動車への 適用が拡大されると予測されているマグネシウム合金 を強固で短時間に接合する方法を開発することを目的 に、PA6シートが連続繊維CFRTPとマグネシウム合金 の摩擦シーム接合の継手強度に及ぼす影響について調 査した.

2. 使用材料

2.1 マグネシウム合金

マグネシウム合金には板厚2mm, 引張強さ290MPa のAZ31を使用した. AZ31へのシランカップリング剤 はXPSによる表面分析と引張せん断試験の結果から最 適なKBE-9007N (3-イソシアネートプロピルトリエト キシシラン)を選定した.シランカップリング処理は, KBE-9007Nを1.0vol%に希釈した液を室温で30分間攪 拌させ,この中に流水中で研磨したAZ31を浸漬するこ とで行った.

2.2 連続繊維CFRTP

連続繊維 CFRTP の強化材には炭素繊維織物 (CO6347B, 東レ),マトリックスには現場重合型PA6 を用い, VaRTM法にて成形を行った.連続繊維CFRTP の板厚は3mmで,引張強さは600MPaである.なお,接 合前には表面をエタノールで洗浄し, 50°C - 24時間で 乾燥を行った.

2.3 PA6シート

PA6シートの成形には連続繊維CFRTPのマトリック スと同じ現場重合型PA6を用いた.成形方法は連続繊 維CFRTPと同じVaRTM法を用い,成形後は厚さの均一 化と薄肉化を行うために圧延加工を行った.接合に使 用したPA6シートをFig.1に示すが,厚さ0.3mm,幅5mm となっている.なお,接合時に溶出する未反応モノマ ーを低減させるために,PA6シートは接合前に80℃の 熱湯中に24時間浸漬させ,乾燥処理を行っている.

Fig.1 In situ PA6 sheet (unit:mm)

3. 接合方法

摩擦シーム接合の模式図をFig.2に示す. PA6シート は連続繊維CFRTPの上に置き,両端部を半田ごてで溶 着させることで位置合わせを行った. 接合条件及びそ の名称をTable 1に示す. 接合には直径10mmのSKD製ツ ールを用い,接合長は70mm,接合速度は1mm/s,回転 数は1500rpmとした.

Fig.2 Friction seam welding (unit:mm)

Table 1 Friction seam welding conditions

	Tool tilt angle	Tool plunge depth	Preheat time
A0-0.5	0°	0.5mm	0.1s
A3-0.4	3°	0.4mm	0.1s
A3-0.5	3°	0.5mm	0.1s
A3-0.6	3°	0.6mm	0.1s
A3-0.5(15s)	3°	0.5mm	15s

Friction Seam Welding of Continuous Carbon Fiber Reinforced Thermoplastics and Magnesium Alloy Using PA6 Sheet

Takumi YANAGAWA, Kazuhiro SAKATA, Masakatsu MAEDA, Yuji KIMURA, Kazunori YAMADA, and Norio HIRAYAMA

4. 引張せん断試験

4.1 実験方法

継手強度の評価には引張せん断試験を用いた. 試験 片は精密切断機で,供試体の接合方向に対して垂直に 切出し,1枚の接合体から3本の試験片を採取した. 試 験片の両端部には曲げモーメントの発生を防ぐために, Fig.3に示すタブを付けた.

Fig.3 Tensile shear test specimen (unit:mm)

4.2 実験結果及び考察

引張せん断試験の結果をFig.4に示す.Fig.4には比較 のために,PA6シートは使用せず押込み0.5mmで接合し た結果(N-0.5)についても併記している.破断形態は 全ての供試体で連続繊維CFRTPとAZ31の接合部での はく離となった.前進角0°で接合したA0-0.5の破断荷 重(平均値)は2.3kNとなり,N-0.5より低い値となっ たが,これはFig.5(a)に示すようにPA6シートが十分に 溶融していなかったためだと考えられる.

前進角を3°として接合した供試体においては、押込 み量が0.5mmのA3-0.5の破断荷重が5.5kNで最大となり、 N-0.5の約1.3倍となった. A3-0.5の破断面をFig.5(b)に示 すが, A0-0.5より溶融したPA6シートの面積が広くなっ ている状況が確認できる.また, A3-0.5においては, CFRTP部に露出した炭素繊維が観察されたが、これは 押込み量が増えることで熱量が増え、CFRTP部のPA6 が溶融したためだと考えられる.一方,押込み量を最 も大きくしたA3-0.6の破断荷重は, A3-0.5と概ね同じと なった. A3-0.6の破断面であるFig.5(c)には、ツール通 過部の両側に多くの溶融していないPA6シートが確認 できる.また、ツール通過部のAZ31の板厚の減少量は 0.44mmとなり、A3-0.4やA3-0.5の減少量(0.18mm)の 2倍以上となっていた. 次に、最も良好な結果であっ たA3-0.5の予熱時間を15秒にしたA3-0.5(15s)の破断面 をFig.5(d)に示す. A3-0.5(15s)では, AZ31側に多くの炭 素繊維の付着が見られ、破断荷重は最大の5.8kNとなり、 予熱による接合強度向上の効果を確認することができ た.

Fig.5 Specimens after tensile shear test

5. 結言

Tab

Tah

40

AZ31

PA6シートを用いて連続繊維CFRTPとマグネシウム 合金AZ31の摩擦シーム接合を行った結果,破断荷重は PA6シート幅5mm,前進角3°,ツール押込み量0.5mm, 予熱時間15sの条件で最大となった.

参考文献

- 小澤崇将,加藤数良,前田将克,3003アルミニウム合金と熱可塑性樹脂の重ね摩擦攪拌接合,軽金属,65,9(2015), pp.403-410.
- 2) 永塚公彬,田中宏宣,肖伯律,土谷敦岐,中田一 博,摩擦重ね接合によるアルミニウム合金と炭素 繊維強化樹脂の異材接合特性に及ぼすシランカ ップリング処理の影響,溶接学会論文集,33,4 (2015), pp.317-325.
- 坂田憲泰,前田将克,勅使河原圭介,加藤数良, 平山紀夫,連続繊維を用いたCFRTPとA5052合金の重ね摩擦攪拌接合,61th FRP CON-EX 2016(2016), pp.145.
- 4) 柳川拓海,坂田憲泰,前田将克,木村悠二,山田 和典,平山紀夫,PA6シートを用いた連続繊維 CFRTPとA5052合金の摩擦シーム接合,日本設計 工学会春季研究発表講演会(2019),pp.197.

(a) A0-0.5

(b) A3-0.5

(c) A3-0.6

Tab

CFRTP