長方形箱型断面材の圧縮性状に関する研究

日大生産工(院) 〇三浦 智美 日大生産工 藤本 利昭 日大生産工(学部) 今井 皓己

1. まえがき

近年、コンクリート充填鋼管(Concrete Filled Steel Tube,以下CFT)構造の建物に長方形断面 の柱を用いた事例がいくつか確認されており、 その構造性能に関する研究も行われている。筆 者らは、長方形CFT柱の実験的研究を継続的に 行っており、既往の研究では長方形断面の耐力 についても正方形断面と同様にコンクリート と鋼管の累加耐力により評価が可能であるこ とが明らかになっている^{1)~4}。

しかしながら,長方形鋼管についての実験は CFT柱との比較を目的として行われることが 多く,鋼管の構造性能に関する考察は少ない。

そのため本研究では、昨年度新たに行った中 空鋼管の中心圧縮実験、偏心圧縮実験の結果⁵ と既往の実験で得られた結果を整理し、鋼管の 圧縮性状について考察を行う。

2. 試験体概要

表-1に材料試験結果を示す。試験体はすべて 一般構造用角形鋼管STKR400を使用しており, 引張試験は鋼管平板部より切り出した5号試験 片で行った。中心圧縮実験が行われた試験体は 正方形断面が4体,長方形断面が9体であり,偏 心圧縮実験が行われた試験体は正方形断面が1 体,長方形断面は強軸曲げ,弱軸曲げ合わせて 12体である。なお,試験体名称は,(長辺*B*[mm]: 75,100,150) - (短辺*D*[mm]:75,100,150) - (板厚t[mm]:3.2,4.5,6.0) としている。

表-1 材料試験結果

3. 中心圧縮実験

3.1 実験概要

表-2に中心圧縮実験の概要および結果を示 す。なお、中心圧縮実験の試験体名称は(長辺 *B*[mm]:75,100,150)-(短辺*D*[mm]:75,100, 150)-(板厚*t*[mm]:3.2,4.5,6.0)-(高さ*L*: S,L)としている。

文献1)では、実験変数を断面形状および試験 体高さLとし、正方形断面3体、長方形断面4体 の実験が行われた。文献3)では、断面の幅B, せいDおよび高さLを統一し、板厚tを実験変数 とした3体について実験が行われた。文献5)で は、断面の幅B,板厚tおよび高さLを統一し、 断面せいDを実験変数とした3体について実験 を行った。

図-1に文献5)で中心圧縮実験を行った際の 加力状況を示す。変位計は試験体四隅に設置し、 鋼板中央には1軸ひずみゲージを貼付した。

表-2 中心圧縮実験概要および結果

		板厚 t[mm]	降伏強度 $\sigma_y[N/mm^2]$	引張強度 $\sigma_u[N/mm^2]$	ヤング係数 <i>E</i> [kN/mm ²]	ひずみ ε[%]			断面積 A[mm ²]	高さ <i>L</i> [mm]	一般化 長辺	幅厚比α 短辺	降伏耐力 N _y [kN]	最大荷重 N _u [kN]	耐力比 N _u /N _y
文献1)	75-75-3.2	3.01	384.3	452.1	185.3	41.7) 文献1)	75-75-3.2	843	225	1.	08	324	358	1.10
	100-100-3.2	2.97	397.1	467.2	210.4	29.5		100-100-3.2	1130	300	1.48		449	494	1.10
	150-150-4.5	4.17	447.0	480.2	201.5	31.3		150-150-4.5	2388	450	1.68		1067	1068	1.00
	150-75-3.2	3.03	378.9	427.8	206.7	29.5		150-75-3.2-S	1303	225	2.31	1.16	494	468	0.95
	150-100-3.2	3.05	446.4	488.9	214.8	30.4		150-75-3.2-L	1303	450	2.31	1.16	494	457	0.93
(文献の)	150-100-3.2	2.00	297.0	400.7	202.2	21.6		150-100-3.2-S	1464	300	2.29	1.53	653	539	0.82
入111(2)	150-75-2-2	3.00	387.0	4/1.4	203.3	31.0		150-100-3.2-L	1464	450	2.29	1.53	653	541	0.83
文献3),4)	150-75-3.2	3.06	435.3	507.6	199.0	28.6	文献3)	150-75-3.2	1315	450	2.26	1.13	573	475	0.83
	150-75-4.5	4.33	414.0	494.9	214.9	33.0		150-75-4.5	1825	450	1.56	0.78	756	733	0.97
	150-75-6.0	5.54	414.1	480.2	189.1	31.9		150-75-6.0	2291	450	1.22	0.61	949	1009	1.06
文献5)	150-75-4.5	4.16	414.3	484.1	209.2	31.5	文献5)	150-75-4.5	1758	450	1.62	0.81	728	700	0.96
	150-100-4.5	4.24	417.2	469.7	216.4	30.8		150-100-4.5	2002	450	1.60	1.06	835	829	0.99
	150-150-4.5	4.22	405.3	484.2	212.2	32.6		150-150-4.5	2415	450	1.	58	979	951	0.97

Study on Compression Behavior of Rectangular Box-Section Members

Tomomi MIURA, Toshiaki FUJIMOTO and Koki IMAI

1 - 2

3.2 実験結果

図-2に長方形断面試験体の軸力 - 軸ひずみ 関係を示す。縦軸には実験で得られた最大荷重 eNを降伏耐力N,で除した値eN/N,を用いており、 横軸は実験で得られた軸方向変位 δ から求めた 試験体全長の平均軸ひずみeとしている。長方 形断面の実験は9体行われているが、今回は試 験体高さが同一である7体のみ対象とした。な お、短辺の長さが75mmのものを実線、100mm を点線とし、板厚ごとに色分けした。

弾性範囲において顕著な差はみられなかっ たが,最大耐力と降伏耐力の比および最大耐力 時のひずみについては,板厚が厚くなるほど大 きくなる傾向がみられた。また,短辺の長さの 違いによる差はほとんどみられなかったこと から,中心圧縮を受ける際は長辺側の幅厚比が 最大耐力や変形に大きく影響を与えることが 確認できた。

4. 偏心圧縮実験

4.1 実験概要

表-3に偏心圧縮実験の概要および結果を示 す。偏心圧縮実験の試験体名称は,(長辺

B[mm]:75,100,150) - (短辺*D*[mm]:75,100, 150) - (板厚*t*[mm]:3.2,4.5,6.0) (曲げ方向: s,w) - (高さ*L*:S,L) としている。

文献1)では強軸曲げ, 弱軸曲げいずれも偏心 距離を50mmとしているが, 文献2)および文献 3)では, 最大荷重が降伏耐力の0.6倍程度となる よう偏心距離eを設定したため, 強軸曲げでは 50mm, 弱軸曲げでは25mmとした。また, 降伏 耐力*N*,は, 材料試験より得られた降伏強度*o*,に 鋼管断面積*4*を乗じた値である。終局曲げ耐力 *eMu*は, 正方形断面CFT柱の設計式を長方形断 面に適用できるよう明示した式^のから鋼管部分 の終局耐力を表した(1)式より求めた。なお, 最 大曲げ耐力*eMu*は, 最大荷重時の付加曲げモー メントを考慮した値としている。

 $M_{u} = \{ (D-t)(B-2R) \cdot t + 2t(x_{n}-r) (cD-r-x_{n}) \} \sigma_{y}$

$$+\left\{\left(\frac{D}{2}+\frac{4}{3\pi}R-R\right)\pi R^{2}-\left(\frac{cD}{2}+\frac{4}{3\pi}r-r\right)\pi r^{2}\right\}\sigma_{y}\quad\cdots(1)$$

ここで, *R*:鋼管角部外側の曲げ半径, *r*: 鋼管角部内側の曲げ半径, *x_n*:鋼管内側から中 立軸までの距離, *cD*:鋼管内側の断面せいであ る。

図-3 偏心圧縮実験加力状況

表-3 偏心圧縮実験概要および結果

									- THEIR				
		断面積 A[mm ²]	高さ <i>L</i> [mm]	一般化幅厚比α		手に十日	偏心距離	降伏耐力	最大荷重	耐力比	終局 曲げ耐力	最大曲ば耐力	耐力比
				圧縮側	側面	曲け方向	<i>e</i> [mm]	N_{y} [kN]	$_{e}N_{u}[kN]$	$_eN_u/N_y$	$_{c}M_{u}$ [kNm]	$_{e}M_{u}$ [kNm]	$_{e}M_{u}/_{c}M_{u}$
文献2)	150-100-3.2s-L	1441	450	1.45	2.17	強軸	50	- 558	287	0.51	19.6	14.6	0.75
	150-100-3.2w-S		300	2.17	1.45	弱軸	50		201	0.36	17.2	10.3	0.60
文献4)	150-75-3.2s	1315	450	1.13	2.26	強軸	50	572	284	0.50	20.1	14.5	0.72
	150-75-3.2w			2.26	1.13	弱軸	25		275	0.48	10.6	7.1	0.67
	150-75-4.5s	1825		0.78	1.56	強軸	50	756	433	0.57	22.9	22.9	1.00
	150-75-4.5w			1.56	0.78	弱軸	25		400	0.53	12.3	10.9	0.89
	150-75-6.0s	2291		0.61	1.22	強軸	50	948	585	0.62	25.5	33.1	1.30
	150-75-6.0w			1.22	0.61	弱軸	25		535	0.56	13.9	15.8	1.14
文献5)	150-75-4.5s	1758	450	0.81	1.62	強軸	50	728	414	0.57	22.3	21.7	0.97
	150-75-4.5w			1.62	0.81	弱軸	25		402	0.55	11.3	10.7	0.95
	150-100-4.5s	2002		1.06	1.60	強軸	50	835	481	0.58	25.4	24.9	0.98
	150-100-4.5w			1.60	1.06	弱軸	25		539	0.65	14.0	14.1	1.01
	150-150-4.5	2415		1.58		—	50	978	528	0.54	32.5	26.5	0.82

実験変数は,文献2)では曲げ方向と高さL, 文献4)では板厚t,曲げ方向および偏心距離e, 文献5)では断面辺長比,曲げ方向および偏心距 離eとした。

図-3に文献5)での偏心圧縮実験の加力状況 を示す。4本の変位計を設置し引張側,圧縮側 それぞれの軸方向変位を測定した。また,鋼板 中央には1軸ひずみゲージを貼付し,鋼管の軸 ひずみを測定した。

4.2 実験結果

4.2.1 軸力 - 軸ひずみ関係

図-4に軸力 - 軸ひずみ関係を示す。図の縦軸 は実験で得られた最大荷重 $_eN$ を降伏耐力 N_y で 除した値 $_eN/N_y$ を用いている。図の横軸は、図-4(a),(b)では試験体断面重心における試験体全 長の平均軸ひずみ $_e$ として示している。また図-4(c)では、試験体断面圧縮縁における試験体全 長の平均軸ひずみ $_e$ で示した。

既往の研究より, 偏心圧縮を受ける長方形断 面の鋼管は, 最大耐力や変形に圧縮側となる鋼 板の幅厚比が影響することが確認されている ため, 中心圧縮実験同様, 板厚および短辺の長 さによる線種の区別を行った。

図-4(a)より強軸曲げでは、鋼管の最大耐力お よび変形について、圧縮側となる短辺の幅厚比 による傾向はみられないが、側面となる長辺の 幅厚比の違いによって明確な差がみられた。

一方, 弱軸曲げの最大耐力時の変形について は, 図-4(b), (c)では圧縮側である長辺の幅厚比 による傾向がわずかにみられた。また, 断面全 体の平均軸ひずみを用いた図-4(b)と, 圧縮縁ひ ずみを用いた図-4(c)では, 最大耐力およびひず みについて明確な傾向の差はみられなかった。

4.2.2 曲げモーメント - 曲率関係

図-5に長方形断面試験体の曲げモーメント - 曲率関係を示す。縦軸は、実験で得られた曲 げモーメント_eMを(1)式より求めた計算曲げ耐 力_c M_u で除した値_e $M/_cM_u$ を用いている。横軸に は、試験体全長の平均曲率に長辺の断面せいを 乗じた ϕD を用いた。

曲げモーメントの耐力比については, 強軸曲 げ, 弱軸曲げともに板厚が厚くなるほど大きく なっていることから, 曲げ方向に関わらず長辺 の幅厚比による影響を受けることが確認でき た。また, 弾性範囲については強軸曲げではあ まり差がみられなかったが, 弱軸曲げでは短辺 が100mmの2試験体においてわずかに傾きが大 きくなった。

4.2.3 座屈波長

表-4に座屈波長一覧を示す。座屈波長Lbは, 実験前の試験体高さLから実験終了後の試験体 において座屈が生じていない部分の長さを差 し引くことにより求めた。偏心圧縮実験につい ては,圧縮側となる面のみ計測を行った。なお, 座屈波長は必ずしも平行ではなく,ある程度の 誤差を含んでいるため,傾向のみ検討した。

中心圧縮を受ける正方形断面では,一般化幅 厚比が大きくなるほど座屈波長が小さくなる 傾向がみられた。

一方,中心圧縮を受ける長方形断面において は,幅厚比による傾向はみられなかった。

短辺が75mmの長方形断面では,強軸曲げ方 向に偏心圧縮を受ける場合,長辺,短辺に関わ らず幅厚比が大きくなるほど座屈波長が短く なる傾向がみられた。しかしながら,弱軸方向 に偏心圧縮を受ける場合,座屈波長は幅厚比の 大きさに関わらず同程度の長さであった。また, 今回の結果では,断面辺長比の違いによる座屈 波長の明確な傾向はみられなかった。

		高さ <i>L</i> [mm]	座屈波長 <i>L_b</i> [mm]	L_b/L [%]	
	文献1)	75-75-3.2	225	66	29.3
		100-100-3.2	300	82	27.3
		150-150-4.5	450	119	26.4
		150-75-3.2-8	225	88	39.1
		150-75-3.2-L	450	87	19.3
		150-100-3.2-S	300	105	35.0
中心圧縮実験		150-100-3.2-L	450	105	23.3
	文献3)	150-75-3.2	450	92	20.4
		150-75-4.5 450		107	23.8
		150-75-6.0	450	106	23.6
	文献5)	150-75-4.5	450	116	25.8
		150-100-4.5 450		97	21.6
		150-150-4.5	450	122	27.1
	文献2)	150-100-3.2s-L	450	120	26.7
		150-100-3.2w-S	300	117	39.0
	文献4)	150-75-3.2s	450	80	17.8
		150-75-3.2w	450	125	27.8
		150-75-4.5s	450	100	22.2
		150-75-4.5w	450	120	26.7
偏心圧縮実験		150-75-6.0s	450	110	24.4
		150-75-6.0w	450	130	28.9
	文献5)	150-75-4.5s	450	83	18.4
		150-75-4.5w	450	122	27.1
		150-100-4.5s	450	106	23.6
		150-100-4.5w	450	115	25.6
		150-150-4.5	450	125	27.8

表-4 座屈波長

5. まとめ

長方形鋼管の中心圧縮実験および偏心圧縮 実験より、以下の知見が得られた。

- ・長方形鋼管が中心圧縮を受ける場合,長辺 側の幅厚比が最大耐力および最大耐力時 の変形に大きく影響する。
- 長方形鋼管が強軸曲げ方向に偏心圧縮を 受けるとき、最大耐力および最大耐力時の 軸ひずみは曲げ方向に関わらず側面の幅 厚比の影響を受ける。
- 長方形鋼管が弱軸曲げ方向に偏心圧縮を 受ける場合,最大耐力は幅厚比による傾向 がみられないが,最大耐力時の軸ひずみは 幅厚比の影響を受ける。
- ・最大曲げ耐力と終局曲げ耐力の比は、曲げ 方向に関わらず長辺の幅厚比の影響を受 ける。

参考文献

- 長崎透,荒井望,藤本利昭:長方形鋼管およびCFT部材の圧縮特性,日本建築学会関東支部研究報告集I,pp.609-610,2014.2
- 2) 長崎透,岡修平,荒井望,藤本利昭:コンクリート充填 長方形鋼管の構造性能に関する研究,日本大学生産工学 部学術講演会講演概要,pp.47-50,2014.12
- 城戸基,藤本利昭:長方形CFT柱の圧縮性状に関する研究,日本建築学会大会学術講演梗概集,pp.1935-1936, 2017.8
- 城戸基,藤本利昭:長方形CFT柱の曲げ圧縮性状に関する実験的研究,日本大学生産工学部学術講演会講演概要, pp.71-74,2017.12
- 5) 三浦智美,藤本利昭:長方形鋼管の曲げ圧縮性状に関す る実験的研究,日本大学生産工学部学術講演会講演概要, pp.31-34,2018.12
- 藤本利昭,田中宏和,平出亨,竹中啓之:断面形状を考 慮した角形CFT柱の設計式、日本建築学会技術報告集, Vol.15, No.31, pp.757-760, 2009.10

